• Title/Summary/Keyword: hydrogen pores

Search Result 88, Processing Time 0.021 seconds

Selective Removal of HCN and Aldehydes in Mainstream Smoke by Impregnated Activated Carbon and Functionalized Silica-gel (기능성 실리카겔과 첨착 활성탄에 의한 주류연 중 시안화수소와 알데히드의 선택적 흡착)

  • Lim Heejin;Shin Chang-Ho;Yang Burm-Ho;Hong Jin-Young;Ko Dongkyun;Lee Young-Tack
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.27 no.2
    • /
    • pp.171-177
    • /
    • 2005
  • Coconut based activated carbon and silica-gels were impregnated with 3-aminopropyltri ethoxysilan(APS) and N-(2-aminoethyl)-3-aminopropyl triethoxysilane (AEAPS) in order to investigate the effect of the amine group and the pore size of the supports on the removal of hydrogen cyanide(HCN) and aldehydes in mainstream smoke(MS). The physicochemical properties of the supports were analyzed by using thermal gravity analyzer(TGA), $N_2$ adsorption and desorption isotherms$(BET,\;N_2)$, and SEM-EDS. According to our experimental data, there was no significant difference in the delivery amount of HCN and aldehydes of non-functionalized silica-gels having meso-pores bigger than $20\AA$. In the case of silica-gels functionalized with APS(APS silica-gel), the delivery amounts of hydrogen cyanide(HCN) and aldehydes decreased with the increase of APS concentration. Silica-gel functionalized with AEAPS(AEAPS silica-gel) showed higher removal efficiency than that of APS silica-gels. The delivery amounts of HCN and aldehydes of activated carbon impregnated with APS and AEAPS increased with the increase of the APS and AEAPS concentrations. In accordance with the specific surface area analysis results, APS and AEAPS molecules decreased the specific surface area by blocking the micro-pores of the activated carbon. The volatile organic components removal efficiency by the micro-pores was higher than that of the amine group impregnated into the activated carbon.

Synthesis and Microstructure of Cu/VSZ Composite for High Temperature Electrolysis Cathode (고온수전해 수소극용 Cu/YSZ 복합체의 제조 및 미세구조)

  • Kim, Jong-Min;Jung, Hang-Chul;Kang, An-Soo;Hong, Hyun-Seon
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.18 no.3
    • /
    • pp.238-243
    • /
    • 2007
  • The composite powder of Cu and YSZ was synthesized for a high temperature electrolysis cathode by mechanical milling. The average Cu particle size was reduced to 5 micro-meter from 48 micro-meter after the mechanical ball milling. The composite powder showed that Cu particles were uniformly covered with finer YSZ particles. Sub-micron sized pores were uniformly dispersed in the Cu/YSZ composit. Homogeneously-dispersed fine YSZ in the composite is expected to the increase in triple phase boundaries, thereby leading the enhanced performance of cathode.

Pressure Effects on Zircaloy-4 Steamside Corrosion and Hydrogen Pick-up

  • Ok, Young-kil;Kim, Yong-soo
    • Nuclear Engineering and Technology
    • /
    • v.30 no.5
    • /
    • pp.396-402
    • /
    • 1998
  • Experiments on the steamside corrosion and hydrogen pick-up of Zircaloy-4 under high pressure up to 10.3MPa are carried out to estimate the pressure effects on the kinetics. Temperature and reaction time are determined to be 37$0^{\circ}C$ and 72hours for the pre-transition test and $700^{\circ}C$ and 210minutes for the post-transition test, respectively. Results show that under 10.3MPa pressure the oxidation reaction is 50% and 100% enhanced in the pre-and the post-transition regime, respectively. Total amount of hydrogen uptake in the reaction is proportionally increased as corrosion weight gain is elevated. However, pick-up fraction is not affected by the high pressure. The fraction is almost twice greater than that in the waterside corrosion. Edges in the specimens play a certain role in the enhancement, especially in the post-transition regime. To identify physical property changes of oxide film such as micro-cracks or micro-pores, careful and thorough examination must be needed with some special techniques.

  • PDF

The Study on the Formation Mechanism of Gas Pore During Lost Foam Casting of Al alloys (알루미늄 합금의 소실모형주조 중 기포 형성 기구에 관한 연구)

  • Shin, Seung-Ryoul;Han, Sang-Won;Lee, Kyong-Whoan;Lee, Zin-Hyoung
    • Journal of Korea Foundry Society
    • /
    • v.23 no.5
    • /
    • pp.268-275
    • /
    • 2003
  • The mechanism of the hydrogen gas pore formation was investigated in Lost Foam Casting of Al-alloy by reduced pressure test and real casting. The hydrogen gas pick-up was affected by the formed gas during the decomposition of polystyrene in addition to the liquid product. It depended on pouring temperature and a proper temperature of metal front gave the minimum hydrogen pick-up. At a low pouring temperature, the hydrogen went into the melt mainly from entrapped liquid product of polystyrene but pores were formed from the gas as well as the liquid product at a high pouring temperature. The mold flask evacuation down to 710torr decreased the gas porosity down by around 0.4% vol%. The entrapped decomposition product of polystyrene in the melt was observed through the visualization of filling behavior of Al alloy-melt with the high speed camera.

Fabrication and Properties of Porous Tungsten by Freeze-Drying Process (동결건조 공정을 이용한 텅스텐 다공체의 제조 및 특성)

  • Lee, Young-Sook;Oh, Sung-Tag
    • Korean Journal of Materials Research
    • /
    • v.21 no.9
    • /
    • pp.520-524
    • /
    • 2011
  • Porous W with controlled pore characteristics was fabricated by a freeze-drying process. $WO_3$ powder and camphene were used as the source materials of W and sublimable vehicles, respectively. Camphene slurries with $WO_3$ contents of 10 and 15 vol% were prepared by milling at $50^{\circ}C$ with a small amount of oligomeric polyester dispersant. Freezing of a slurry was done in a Teflon cylinder attached to a copper bottom plate cooled at $-25^{\circ}C$ while the growth direction of the camphene was unidirectionally controlled. Pores were generated subsequently by sublimation of the camphene during drying in air for 48 h. The green body was hydrogen-reduced at $800^{\circ}C$ for 30 min and sintered in a furnace at $900^{\circ}C$ for 1 h under a hydrogen atmosphere. Microstructural observation revealed that all of the sintered samples were composed of only W phase and showed large pores which were aligned parallel to the camphene growth direction. The porosity and pore size increased with increasing camphene content. The difference in the pore characteristics depending on the slurry concentration may be explained by the degree of powder rearrangement in the slurry. The results strongly suggest that a porous metal with the required pore characteristics can be successfully fabricated by a freeze-drying process using metal oxide powders.

Microscopic characterization of pretransition oxide formed on Zr-Nb-Sn alloy under various Zn and dissolved hydrogen concentrations

  • Kim, Sungyu;Kim, Taeho;Kim, Ji Hyun;Bahn, Chi Bum
    • Nuclear Engineering and Technology
    • /
    • v.50 no.3
    • /
    • pp.416-424
    • /
    • 2018
  • Microstructure of oxide formed on Zr-Nb-Sn tube sample was intensively examined by scanning transmission electron microscopy after exposure to simulated primary water chemistry conditions of various concentrations of Zn (0 or 30 ppb) and dissolved hydrogen ($H_2$) (30 or 50 cc/kg) for various durations without applying desirable heat flux. Microstructural analysis indicated that there was no noticeable change in the microstructure of the oxide corresponding to water chemistry changes within the test duration of 100 days (pretransition stage) and no significant difference in the overall thickness of the oxide layer. Equiaxed grains with nano-size pores along the grain boundaries and microcracks were dominant near the water/oxide interface, regardless of water chemistry conditions. As the metal/oxide interface was approached, the number of pores tended to decrease. However, there was no significant effect of $H_2$ concentration between 30 cc/kg and 50 cc/kg on the corrosion of the oxide after free immersion in water at $360^{\circ}C$. The adsorption of Zn on the cladding surface was observed by X-ray photoelectron spectroscopy and detected as ZnO on the outer oxide surface. From the perspective of $OH^-$ ion diffusion and porosity formation, the absence of noticeable effects was discussed further.

Effect of Sublimable Vehicle Compositions in the Camphor-Naphthalene System on the Pore Structure of Porous Cu-Ni (Camphor-Naphthalene 동결제 조성이 Cu-Ni 다공체의 기공구조에 미치는 영향)

  • Kwon, Na-Yeon;Suk, Myung-Jin;Oh, Sung-Tag
    • Journal of Powder Materials
    • /
    • v.22 no.5
    • /
    • pp.362-366
    • /
    • 2015
  • The effect of sublimable vehicle composition in the camphor-naphthalene system on the pore structure of porous Cu-Ni alloy is investigated. The CuO-NiO mixed slurries with hypoeutectic, eutectic and hypereutectic compositions are frozen into a mold at $-25^{\circ}C$. Pores are generated by sublimation of the vehicles at room temperature. After hydrogen reduction at $300^{\circ}C$ and sintering at $850^{\circ}C$ for 1 h, the green body of CuO-NiO is completely converted to porous Cu-Ni alloy with various pore structures. The sintered samples show large pores which are aligned parallel to the sublimable vehicle growth direction. The pore size and porosity decrease with increase in powder content due to the degree of powder rearrangement in slurry. In the hypoeutectic composition slurry, small pores with dendritic morphology are observed in the sintered Cu-Ni, whereas the specimen of hypereutectic composition shows pore structure of plate shape. The change of pore structure is explained by growth behavior of primary camphor and naphthalene crystals during solidification of camphor-naphthalene alloys.

Effect of Solidification Condition of Sublimable Vehicles on the Pore Characteristics in Freeze Drying Process (동결건조 공정에서 동결제의 응고조건이 기공특성에 미치는 영향)

  • Suk, Myung-Jin;Kim, Ji Soon;Oh, Sung-Tag
    • Journal of Powder Materials
    • /
    • v.21 no.5
    • /
    • pp.366-370
    • /
    • 2014
  • The present study demonstrates the effect of solidification condition on the pore structure in freeze drying process using the slurries of CuO/sublimable vehicles. Camphene and Camphor-45 wt% naphthalene based slurries with 14 vol% CuO powder were frozen into a mold at $-25^{\circ}C$, followed by sublimation at room temperature. The green bodies were hydrogen-reduced and sintered at $500^{\circ}C$ for 1 h. The porous Cu specimen, frozen the CuO/camphene slurry into the heated mold of the upper part, showed large pores with unidirectional pore channels and small pores in their internal wall. Also, it was observed that the size of large pores was decreasing near the bottom part of specimen. The change of pore structure depending on the freezing condition was explained by the nucleation behavior of camphene crystals and rearrangement of solid powders during solidification. In case of porous Cu prepared from CuO/Camphor-naphthalene system, the pore structure exhibited plate shape as a replica of the original structure of crystallized vehicles with hypereutectic composition.

Development of a Cost-Effective 20K Hydrogen BET Measurement for Nanoporous Materials (나노다공체 물성 측정을 위한 극저온(20K) 수소 BET 개발 및 응용)

  • Park, Jaewoo;Oh, Hyunchul
    • Korean Journal of Materials Research
    • /
    • v.27 no.9
    • /
    • pp.466-470
    • /
    • 2017
  • With the matters of climate change, energy security and resource depletion, a growing pressure exists to search for replacements for fossil fuels. Among various sustainable energy sources, hydrogen is thought of as a clean energy, and thus efficient hydrogen storage is a major issue. In order to realize efficient and safe hydrogen storage, various porous materials are being explored as solid-states materials for hydrogen storage. For those purposes, it is a prerequisite to characterize a material's textural properties to evaluate its hydrogen storage performance. In general, the textural properties of porous materials are analyzed by the Brunauer-Emmett-Teller (BET) measurement using nitrogen gas as a probe molecule. However, nitrogen BET analysis is sometimes not suitable for materials possessing small pores and surfaces with high curvatures like MOFs because the nitrogen molecule may sometimes be too large to reach the entire porous framework, resulting in an erroneous value. Hence, a smaller probe molecule for BET measurements (such as hydrogen) may be required. In this study, we describe a cost-effective novel cryostat for BET measurement that can reach temperatures below the liquefaction of hydrogen gas. Temperature and cold volume of the cryostat are corrected, and all measurements are validated using a commercial device. In this way, direct observation of the hydrogen adsorption properties is possible, which can translate directly into the determination of textural properties.

Deposition and Characterization of Electrophoretic Paint on AZ31 Magnesium Alloy

  • Nguyen, Van Phuong;Moon, Sungmo
    • Journal of the Korean institute of surface engineering
    • /
    • v.49 no.2
    • /
    • pp.141-146
    • /
    • 2016
  • In this study, electrophoretic paint (E-paint) was deposited on the knife-abraded surface of AZ31 magnesium alloy (AZ31), and its adhesion and corrosion resistance were examined by tape peel-test and salt spray test, respectively. E-paint started to deposit on AZ31 Mg alloy after an inductance time and pores were found in the E-paint layer which is ascribed to hydrogen bubbles generated on the surface during the painting process. The pores disappeared after curing for 15 min at $160^{\circ}C$. The E-paint on AZ31 exhibited good adhesion after immersion in deionized water for 500 h at $40^{\circ}C$. The E-paint sample without scratch showed no corrosion after 1500 h of salt spray test. However, on the scratched sample, blisters were visible adjacent to the scratched sites after 500 h of salt spray test.