• Title/Summary/Keyword: hydrogen phosphide

Search Result 3, Processing Time 0.023 seconds

Monitoring of Aluminium Phosphide Residues in Wheat and Wheat Flour (밀과 밀가루 중 알루미늄포스파이드 잔류량 모니터링)

  • Choi, Yong-Hoon;Yoon, Sang-Hyeon;Hong, Hye-Mi;Kang, Yun-Sook;Chae, Kab-Ryong;Lee, Jong-Ok
    • Korean Journal of Food Science and Technology
    • /
    • v.37 no.4
    • /
    • pp.532-536
    • /
    • 2005
  • GC-NPD analysis was performed on residues of aluminium phosphide in raw wheat and wheat products by trapping gaseous phosphine in the headspace of vessel. In Australian wheat, over 95% of samples were detected below 1 ppb, considered as safe level, whereas in American wheat, about 70% of 58 samples were detected within 1-10 ppb with 4 showing over 10 ppb. About 14-22% phosphine residues of raw wheat were retained after milling process. Wheat samples of same origin showed significant varying levels of phosphine.

Formation of Al2O2 supported Ni2P based 3D catalyst for atmospheric deoxygenation of rubberwood sawdust

  • Pranshu Shrivastava
    • Advances in Energy Research
    • /
    • v.8 no.4
    • /
    • pp.223-231
    • /
    • 2022
  • An ex-situ gravitational fixed bed pyrolysis reactor was used over Al2O3 supported Ni2P based catalyst with various Ni/P molar ratios (0.5-2.0) and constant nickel loading of 5.37 mmol/g Al2O3 to determine the hydrodeoxygenation of rubberwood sawdust (RWS) at atmospheric pressure. The 3D catalysts formed were characterized structurally as well as acidic properties were determined by hydrogen-temperature programmed reduction (TPR). The Ni2P phase formed completely on Al2O3 for 1.5 Ni/P ratio, although lesser crystallite sizes of Ni2P were seen at Ni/P ratios less than 1.5. Additionally, it was shown that when nickel loading level increased, acidity increased and specific surface area dropped, probably because nickel phosphate is not easily converted to Ni2P. When Ni/P ratio was 1.5, Ni2P phase fully formed on Al2O3. The catalytic activity was explained in terms of impacts of reaction temperature and Ni/P molar ratio. At relatively high temperature of 450℃, the high-value deoxygenated produce was predominantly composed of n-alkanes. Based on the findings, it was suggested that hydrogenolysis, hydrodeoxygenation, dehydration, decarbonylation, and hydrogenation are all part of mechanism underlying hydrotreatment of RWS. In conclusion, the synthesized Ni2P/ Al2O3 catalyst was capable of deoxygenating RWS with ease at atmospheric pressure, primarily resulting in long chained (C9-C24) hydrocarbons and acetic acid.