• Title/Summary/Keyword: hydrogen ion sensor

Search Result 25, Processing Time 0.028 seconds

An Improvement of Recovery Characteristics of ISFET Glucose Sensor by Employing Oxygen Electrolysis (산소분자의 전기분해법을 도입한 ISFET 포도당센서의 회복특성 개선)

  • Park, Keun-Yong;Choi, Sang-Bok;Lee, Young-Chul;Lee, Min-Ho;Sohn, Byung-Ki
    • Journal of Sensor Science and Technology
    • /
    • v.9 no.3
    • /
    • pp.203-207
    • /
    • 2000
  • The sensitivity of ISFET glucose sensor is improved by employing amperometric actuation method. However, this method takes long time to recover the primary output voltage after measurement because of slow migration of the hydrogen ion between internal and external sensing membranes. Consequently, such a recovery-time delaying problem is one of obstacles to a practical use. In this paper, a new method is proposed to control the concentration of hydrogen ion in internal membrane, which applies a reduction potential to the working electrode for supplying hydroxide ion. Experimental results show that the recovery-time was reduced within 2 minute against decades minute of conventional method.

  • PDF

Determination of As(V) ion by Chemiluminescence Method

  • Lee, Sang-Hak;Jeon, Hyun-Sook
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2003.11a
    • /
    • pp.109-112
    • /
    • 2003
  • A method to determine As(V) ions in aqueous solution by chemiluminescence method has been studied using a stopped flow system. The method is based on the increased chemiluminescence intensity with the addition of As(V) ion to a solution of lucigenin and hydrogen peroxide. The effects of KOH concentration, $H_2O_2$ concentration and flow rate of reagents on the chemiluminescence intensity have been investigated. The calibration curve for As(V) was linear over the range from $1.0{\times}l0^{-6}$M to $1.0{\times}l0^{-4}$M, the coefficient of correlation was 0.997 and the detection limit was $3.3{\times}l0^{-7}$M under the optimal experimental conditions.

  • PDF

Metal-Semiconductor-Metal Photodetector Fabricated on Thin Polysilicon Film (다결정 실리콘 박막으로 구성된 Metal-Semiconductor-Metal 광검출기의 제조)

  • Lee, Jae-Sung;Choi, Kyeong-Keun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.5
    • /
    • pp.276-283
    • /
    • 2017
  • A polysilicon-based metal-semiconductor-metal (MSM) photodetector was fabricated by means of our new methods. Its photoresponse characteristics were analyzed to see if it could be applied to a sensor system. The processes on which this study focused were an alloy-annealing process to form metal-polysilicon contacts, a post-annealing process for better light absorption of as-deposited polysilicon, and a passivation process for lowering defect density in polysilicon. When the alloy annealing was achieved at about $400^{\circ}C$, metal-polysilicon Schottky contacts sustained a stable potential barrier, decreasing the dark current. For better surface morphology of polysilicon, rapid thermal annealing (RTA) or furnace annealing at around $900^{\circ}C$ was suitable as a post-annealing process, because it supplied polysilicon layers with a smoother surface and a proper grain size for photon absorption. For the passivation of defects in polysilicon, hydrogen-ion implantation was chosen, because it is easy to implant hydrogen into the polysilicon. MSM photodetectors based on the suggested processes showed a higher sensitivity for photocurrent detection and a stable Schottky contact barrier to lower the dark current and are therefore applicable to sensor systems.

Energy Loss of Hydrogen Atom due to Charge Exchange in Neutral Particle Energy Analyzer (중성입자 에너지 분석장치에서 전하교환용 탄소박막에 의한 수소원자의 에너지 손실특성)

  • Kim, Kye-Ryung;Kim, Wan;Lee, Yong-Hyun;Kang, Hee-Dong
    • Journal of Sensor Science and Technology
    • /
    • v.7 no.3
    • /
    • pp.179-187
    • /
    • 1998
  • A neutral particle energy analyzer, which has the carbon stripping foil and the $90^{\circ}$ cylindrical electrostatic deflection plate, was designed and constructed for measuring of ion temperature in plasma. The energy calibration and energy resolution were studied in detail for a hydrogen ion at the $0.5{\sim}3.0\;keV$ energy using a duoplasmatron ion source. An energy of hydrogen ion to the deflection plate voltage at the peak ion count rate could be fitted by the expression $E_{o}(keV)$=3.83V(kV). The measured energy resolution, which was about 2 % at the energy of 3.0 keV and 9 % at the energy of 0.5keV, was better for the increased hydrogen ion energy. For the charge exchanged hydrogen atom due to the carbon stripping foil, the energy calibration, energy loss and resolution were measured to the $0.5{\sim}2.0{\mu}g/cm^{2}$ thickness of the carbon stripping foil. An energy of the charge exchanged hydrogen atom as a function of the deflection plate voltage and carbon foil thickness could be fitted by the expression $E_{o}(keV)=(0.53d+4.4){\cdot}V(kV)$. The energy loss was $0.23{\sim}0.89\;keV $ to the $0.5{\sim}2.0{\mu}g/cm^{2}$ carbon foil thickness and the $0.5{\sim}3.0\;keV$ energy of the incident neutral hydrogen atom, it could be fitted by the expression ${\Delta}E=(0.12d+0.27){\cdot}{E_{o}}^{1/2}(keV)$. The measured energy resolution for the neutral hydrogen atom, which was between 7 % and 35 % in this experiment region, was increased for the increasing neutral hydrogen atom energy and the decreasing carbon stripping foil thickness.

  • PDF

Anion Sensing Properties of New Colorimetric Chemosensors Based on Thiourea and Urea Moieties

  • Kim, Dong-Wan;Kim, Jung-Hwan;Hwang, Jae-Young;Park, Jong-Keun;Kim, Jae-Sang
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.4
    • /
    • pp.1159-1164
    • /
    • 2012
  • A new colorimetric sensors containing thiourea (1-(4-nitrophenyl)-3-quinolin-6-ylthiourea; 1) and urea(1-(4-nitrophenyl)-3-quinolin-6-ylurea; 2) moieties for fluoride were designed and synthesized. These simple receptors were characterized their stoichiometry, and investigates the mechanism of their selectivity as anion receptors. The addition of tetrabutylammonium fluoride salts to the solution of receptors caused a dramatically and clearly observable color changes from colorless to yellow. To examine their application as anion receptors by UV-vis and $^1H$ NMR spectroscopy results revealed their higher selectivity for fluoride ion than other anions. The receptors and fluoride ion formed a 1:1 stoichiometry complex through strong hydrogen bonding interactions in the first step, followed by a process of deprotonation in presence of an excess of $F^-$ in DMSO solvent.

A Dissolved Oxygen Measurement System Using FET-type Dissolved Oxygen Sensor Array (FET형 용존산소 센서 어레이 측정시스템)

  • Jeong, H.;Sohn, B.K.
    • Journal of Sensor Science and Technology
    • /
    • v.10 no.4
    • /
    • pp.259-265
    • /
    • 2001
  • FET-type dissolved oxygen sensor has the Pt working electrode around the pH-ISFET. Appling a voltage to the working electrode, the hydrogen ion which is proportional to the dissolved oxygen concentration occurs around the pH sensing gate and we can measure the dissolved oxygen concentration by detecting pH concentration through the pH-ISFET. In this paper, a dissolved oxygen measurement system using FET-type dissolved oxygen sensor array which adopt a specific algorithm to enhance the reliability has been developed and we compared its performance with the commercial dissolved oxygen measurement system.

  • PDF

WSN-based Coastal Environment Monitoring System Using Flooding Routing Protocol (플러딩 라우팅 프로토콜을 이용한 WSN 기반의 연안 환경 모니터링 시스템)

  • Yoo, Jae-Ho;Lee, Chang-Hee;Ock, Young-Seok;Chung, Wan-Young
    • Journal of Sensor Science and Technology
    • /
    • v.21 no.1
    • /
    • pp.46-52
    • /
    • 2012
  • The rapid water pollution in stream, river, lake and sea in recent years raises an urgent need for continuous monitoring and policymaking to conserve the global clean environment. In particular, the increasing water pollution in coastal marine areas adds to the importance of the environmental monitoring systems. In this paper, the mobile server is designed to gathers information of the water quality at coastal areas. The obtained data by the server is transmitted from field servers to the base station via multi-hop communication in wireless sensor network. The information collected includes dissolved oxygen(DO), hydrogen ion exponent(pH), temperature, etc. By the information provided the real-time monitoring of water quality at the coastal marine area. In addition, wireless sensor network-based flooding routing protocol was designed and used to transfer the measured water quality information efficiently. Telosb sensor node is programmed using nesC language in TinyOS platform for small scale wireless sensor network monitoring from a remote server.

Fabrication and Its Characteristics of Ion Energy Spectrometer for Diagnostics of Plasma (플라즈마 진단을 위한 이온에너지 분석장치의 제작 및 특성 조사)

  • Kim, Kye-Ryung;Kim, Wan;Lee, Yong-Hyun;Kang, Hee-Dong
    • Journal of Sensor Science and Technology
    • /
    • v.7 no.3
    • /
    • pp.163-170
    • /
    • 1998
  • An ion energy spectrometer which has the $45^{\circ}$ parallel electrostatic deflection plate was designed and constructed for measuring ion temperature in high temperature plasma. The energy calibration and the energy resolution were studied in detail for a hydrogen ion at the $0.24{\sim}1.92\;keV$ energy using electrostatic accelerator with a duoplasmatron ion source. The voltage of the deflection plate was linearly increased for the decreased ion detector position at the constant ion energy and decreased for the increased ion energy at the fixed ion detector position. The inclination of the deflection plate voltage to the ion energy was between 0.92 and 1.61, and linearly decreased for the increased the ion detector position. The measured energy resolution, which is $4.2%\;{\sim}\;11.6%$ in this experiment region, was improved for the increased ion dector position and ion energy. The relative efficiency was increased for the decreased the ion detector position. The ion energy spectrum of the DC plasma in the multi-purpose plasma generator was measured using this equipment. The ion temperature was 203-205 eV at the discharge voltage 320 V, discharge current 1.7 A.

  • PDF

Development of an Enzyme Electrode Biosensor for Lactic Acid Bacteria (효소 전극을 이용한 유산균 측정 바이오센서 개발)

  • Park T. S.;Cho S. I.
    • Journal of Biosystems Engineering
    • /
    • v.30 no.4 s.111
    • /
    • pp.249-253
    • /
    • 2005
  • This study was carried out to develop enzyme biosensor for lactic acid bacteria. Lactic acids produced by lactic acid bacteria (LAB) was measured and good correlation $R^2=0.98$ between LAB count and lactic acids concentration was found. Hydrogen ion produced by L-lactate dehydrogenase (L-LDH) was measured by a potentiometer. Glutamic-pyruvic transminase (GPT) was used for eliminating inhibitor in the reaction. Polyacrylamide gel was used for immobilizing matrix of the sensor. The biosensor was tested and showed good feasibility with $R^2=0.99$ on validation.

ANALYSIS OF FLUIDIC BEAD CUBE EMBEDDED PORTABLE CMOS SENSING SYSTEM FOR IMMUNO REACTION MONITORING (유체소자가 집적화된 면역검사용 휴대용 CMOS 바이오칩의 분석)

  • Jeong, Yong-Won;Park, Se-Wan;Kim, Jin-Seok;Kim, Hyeon-Cheol;Chun, Kuk-Jin
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.755-758
    • /
    • 2005
  • This paper describes the novel immunoassay sensing system for a portable clinical diagnosis system. It consists of a bead cage reactor and a CMOS integrated biosensor. It showed the simple and easy antibody coating method on beads by flow-through avidin biotin complex technology in a microfluidic device. It showed just 90 nL sample consumption and good result for the application of alpha feto protein. The bead cage reactor has the role of the antibody coating, antigen binding and enzyme linking for the electrochemical sensing method. The CMOS biosensor consists of ISFET (ion selective field effect transistor) biosensor and temperature sensor for detecting pH that is the byproduct of enzyme reaction. The sensitivity is 8 $kHz/^{\circ}C$ in a temperature sensor and 33 mV/pH in a pH sensor. After filling the 15 um polystyrene beads in bead cage, antibody flowed and reacted to beads. Subsequently, the biotinylated antigen flowed and bound to the antibody and GOD (glucose oxidase)-avidin conjugate flowed and reacted to the biotin of the biotinylated antigen. After this reaction process, glucose solution flowed and reacted to the GOD on beads. The hydrogen was generated by glucose-GOD reaction. And it was detected by the pH sensor.

  • PDF