• Title/Summary/Keyword: hydrogen fuel cells

Search Result 428, Processing Time 0.021 seconds

The properties of a low expansion glass ceramics of $Li_{2}O-Al_{2}O_{3}-SiO_{2}$ system ($Li_{2}O-Al_{2}O_{3}-SiO_{2}$계 저팽창 결정화 유리의 특성)

  • Kim, Bok-Hee;Ko, Jung-Hoon;Nam, O-Jung;Kang, Woo-Jin;Lee, Chang-Hoon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.19 no.2
    • /
    • pp.79-83
    • /
    • 2009
  • The glass-ceramic of the $Li_{2}O-Al_{2}O_{3}-SiO_{2}$ system was investigated to develop the low thermal expansion materials. The glass of this system was heat treated at $775^{\circ}C$ for 2 h for nucleation and subsequently at $825{\sim}900^{\circ}C$ for 2 h for crystallization. The crystal structure of the glass-ceramic of this system was a single phase of $\beta$-quartz solid solution($Li_{x}Al_{x}Si_{1-x}O_{2}$). The thermal expansion of the glass-ceramic showed $4.40{\times}10^{-7}{\sim}1.33{\times}10^{-6}K^{-1}$ between $25{\sim}300^{\circ}C$ and $1.56{\times}10^{-6}{\sim}2.53{\times}10^{-6}K^{-1}$ between $25{\sim}800^{\circ}C$, higher than lower temperature range. The mechanical strength remained almost same at around high 110 MPa with heating temperature changes.

Microstructure Evaluation and Wear Resistance Property of Al-Si-X/Al2O3 Composite by the Displacement Reaction in Al-Mg Alloy Melt using High Energy Mechanical Milled Al-SiO2-X Composite Powder (HEMM Al-SiO2-X 복합 분말을 Al-Mg 용탕에서 자발 치환반응으로 제조된 Al-Si-X/Al2O3 복합재료의 조직 및 마멸 특성)

  • Woo, Kee-Do;Kim, Dong-Keon;Lee, Hyun-Bom;Moon, Min-Seok;Ki, Woong;Kwon, Eui-Pyo
    • Korean Journal of Materials Research
    • /
    • v.18 no.6
    • /
    • pp.339-346
    • /
    • 2008
  • Single-crystal $ZnIn_2S_4$ layers were grown on a thoroughly etched semi-insulating GaAs (100) substrate at $450^{\circ}C$ with a hot wall epitaxy (HWE) system by evaporating a $ZnIn_2S_4$ source at $610^{\circ}C$. The crystalline structures of the single-crystal thin films were investigated via the photoluminescence (PL) and Double-crystal X-ray rocking curve (DCRC). The temperature dependence of the energy band gap of the $ZnIn_2S_4$ obtained from the absorption spectra was well described by Varshni's relationship, $E_g(T)=2.9514\;eV-(7.24{\times}10^{-4}\;eV/K)T2/(T+489K)$. After the as-grown $ZnIn_2S_4$ single-crystal thin films was annealed in Zn-, S-, and In-atmospheres, the origin-of-point defects of the $ZnIn_2S_4$ single-crystal thin films were investigated via the photoluminescence (PL) at 10 K. The native defects of $V_{Zn}$, $V_S$, $Zn_{int}$, and $S_{int}$ obtained from the PL measurements were classified as donor or acceptor types. Additionally, it was concluded that a heat treatment in an S-atmosphere converted $ZnIn_2S_4$ single crystal thin films into optical p-type films. Moreover, it was confirmed that In in $ZnIn_2S_4$/GaAs did not form a native defects, as In in $ZnIn_2S_4$ single-crystal thin films existed in the form of stable bonds.

Review on Free-Standing Polymer and Mixed-Matrix Membranes for H2/CO2 Separation (수소/이산화탄소 분리를 위한 프리스탠딩 고분자 및 혼합매질 분리막에 대한 총설)

  • Kang, Miso;Lee, So Youn;Kang, Du Ru;Kim, Jong Hak
    • Membrane Journal
    • /
    • v.32 no.4
    • /
    • pp.218-226
    • /
    • 2022
  • Hydrogen, a carrier of large-capacity chemical and clean energy, is an important industrial gas widely used in the petrochemical industry and fuel cells. In particular, hydrogen is mainly produced from fossil fuels through steam reforming and gasification, and carbon dioxide is generated as a by-product. Therefore, in order to obtain high-purity hydrogen, carbon dioxide should be removed. This review focused on free-standing polymeric membranes and mixed-matrix membranes (MMMs) that separate hydrogen from carbon dioxide reported in units of Barrer [1 Barrer = 10-10 cm3 (STP) × cm / (cm2 × s × cmHg)]. By analyzing various recently reported papers, the structure, morphology, interaction, and preparation method of the membranes are discussed, and the structure-property relationship is understood to help find better membrane materials in the future. Robeson's upper bound limits for hydrogen/carbon dioxide separation were presented through reviewing the performance and characteristics of various separation membranes, and various MMMs that improve separation properties using technologies such as crosslinking, blending and heat treatment were discussed.

Hydrolysis Reaction of NaBH4 Using Activated Cabon Supported Co-B/C, Co-P-B/C Catalyst (활성탄 담지 Co-B/C, Co-P-B/C 촉매를 이용한 NaBH4 가수분해 반응)

  • Oh, Sohyeong;Kim, Youkyum;Bae, Hyojune;Kim, Dongho;Byun, Younghwan;Ahn, Ho-Geun;Park, Kwon-Pil
    • Korean Chemical Engineering Research
    • /
    • v.56 no.5
    • /
    • pp.641-646
    • /
    • 2018
  • Sodium borohydride, $NaBH_4$, shows a number of advantages as hydrogen source for portable proton exchange membrane fuel cells (PEMFCs). Properties of $NaBH_4$ hydrolysis reaction using activated carbon supported Co-B/C, Co-P-B/C catalyst were studied. BET surface area of catalyst, yield of hydrogen, effect of $NaBH_4$ concentration and durability of catalyst were measured. The BET surface area of carbon supported catalyst was over $500m^2/g$ and this value was 2~3 times higher than that of unsupported catalyst. Hydrogen generation of activated carbon supported catalyst was more stable than that of unsupported catalyst. The activation energy of Co-P-B/C catalyst was 59.4 kJ/mol in 20 wt% $NaBH_4$ and 14% lower than that of Co-P-B/FeCrAlloy catalyst. Catalyst loss on activated carbon supported catalyst was reduced to about 1/3~1/2 compared with unsupported catalyst, therefore durability was improved by supporting catalyst on activated carbon.

Study on the Steady-State and Dynamic Performance of Polymer Electrolyte Fuel Cells with the Changes of External and Self-Humidification Conditions (고분자 전해질 연료전지의 외부가습 및 지체가습 변화에 의한 정상상태 및 비정상상태 성능특성 연구)

  • Lee, Yong-Taek;Kim, Bo-Sung;Kim, Yong-Chan;Choi, Jong-Min
    • Journal of the Korean Electrochemical Society
    • /
    • v.10 no.3
    • /
    • pp.196-202
    • /
    • 2007
  • The performance characteristics of the polymer electrolyte fuel cells (PEFCS) were investigated under various humidification conditions at steady-state and transient conditions. The PEFC studied in this study was characterized by I-V curves in the potentiostatic mode and EIS (electrochemical impedance spectroscopy). The I-V curves representing steady-state performance were obtained from OCV to 0.25 V, and the dynamic performance responses were obtained at some voltages. The effects of anodic external humidification were measured by varying relative humidity of hydrogen from 20% to 100% while dry air was supplied in the cathode. At the high voltage region, the performance became higher with the increase of the temperature, while at the low voltage region, the performance decreased with the increase of temperature. The EIS showed that ohmic losses were larger at the dry condition of membrane and the effects of mass transport losses increased remarkably when the external and self-humidification were high. The dynamic responses were also monitored by changing the voltage of the PEFC instantly. As the temperature increased, the current reached steady-state earlier. The self-humidification with the generated water delayed the stabilization of the current except for low voltage conditions.

Durability of Co-P-B/Cu Catalyst for NaBH4 Hydrolysis Reaction (NaBH4 가수분해용 Co-P-B/Cu 촉매의 내구성)

  • Hwang, Byungchan;Jo, Ara;Sin, Sukjae;Choi, Daeki;Nam, Sukwoo;Park, Kwonpil
    • Korean Chemical Engineering Research
    • /
    • v.50 no.4
    • /
    • pp.627-631
    • /
    • 2012
  • Sodium borohydride, $NaBH_4$, shows a number of advantages as hydrogen source for portable proton exchange membrane fuel cells (PEMFCs). The durability of Co-P-B/Cu catalyst for sodium borohydride hydrolysis reaction was studied. The effect of reaction temperature, $NaBH_4$ concentration, NaOH concentration and calcination temperature of catalyst on the durability of Co-P-B/Cu catalyst were measured. The gel formed during hydrolysis reaction affected the durability of catalyst (loss of catalyst). Formation of gel increased the loss of the catalyst. When $NaBH_4$ concentration was high and reaction temperature was higher than $60^{\circ}C$, loss of catalyst was low because gel was not formed. But under the temperature of $40^{\circ}C$, loss of catalyst increased due to gel formation When $NaBH_4$ concentration was 40 weight % and the reaction temperature was $40^{\circ}C$, the loss of catalyst increased as the NaOH concentration increased. As the calcination temperature of catalyst decreased, the loss of catalyst decreased and the activity of catalyst decreased. Calcination of the catalyst at high temperature enhanced the durability of catalyst but diminished the activity of catalyst.

A Study of Ceria on Low-temperature Sintering Using Sintering Aids for Solid Oxide Fuel Cells (소결 조제를 이용한 고체산화물 연료전지용 세리아 전해질의 저온소결 특성 연구)

  • Oh, Chang Hoon;Song, Kwang Ho;Han, Jonghee;Yoon, Sung Pil
    • Journal of Hydrogen and New Energy
    • /
    • v.25 no.3
    • /
    • pp.280-288
    • /
    • 2014
  • SDC (Samarium doped Ceria) electrolyte was developed for Intermediate temperature SOFC ($500^{\circ}C-800^{\circ}C$) which showed a good electrical conductivity. In this study, we used sintering aids to reduce the SDC sintering temperature down to $1000^{\circ}C$, especially which can help the SOFC scale-up. In order to reduce the SDC sintering temperature, $Li_2CO_3$ and $TiO_2$ were used as a sinering aids for decreasing sintering temperature. $Li_2CO_3$ and $TiO_2$ doped SDC sintered at $1000^{\circ}C$ showed 99% of the theoretical density and higher electrical conductivity than the pure SDC sintered at $1500^{\circ}C$. When measuring the OCV (Open circuit voltage) with the $Li_2CO_3$ and $TiO_2$ doped SDC electrolyte, however, the OCV values were lower than the theoretical OCV values which means that the modified SDC still had electronic conductivity.

Nafion Impregnated Electrospun Polyethersulfone Membrane for PEMFC (Nafion 용액 함침과 전기방사를 이용한 고분자 전해질 연료전지용 폴리에테르술폰 막)

  • Lee, Hong-Yeon;Hwang, Hyung-Kwon;Park, Sang-Sun;Choi, Sung-Won;Shul, Yong-Gun
    • Membrane Journal
    • /
    • v.20 no.1
    • /
    • pp.40-46
    • /
    • 2010
  • In this study, we manufactured the membrane using the polyethersulfone (PES) of fiber by using the electrospinning method. The polymer electrolyte membrane for fuel cells was manufactured by impregnating Nafion solution to the porous PES membrane. We confirmed that electrospun PES membrane has higher thermal stability than Nafion 212 membrane by thermogravimetric analysis. Impregnated Nafion in the pores of the electrospun PES membrane was characterized by scanning electron microscopy. The AC impedance data shows the hydrogen ionic conductivity of $10^{-2}$ S/cm below $100^{\circ}C$. Nafion impregnated PES membrane shows the maximum performance at $90^{\circ}C$ showing current density of 389 mA/$cm^2$ at 0.6 V, while Nafion 212 membrane shows maximum at $75^{\circ}C$.

A Characterization Study on Nafion$^{(R)}$/$ZrO_2-TiO_2$ Composite Membranes for PEMFC Operation at High Temperature and Low Humidity (고온/저가습 PEMFC 운전을 위한 Nafion$^{(R)}$/$ZrO_2-TiO_2$ 복합 전해질 막의 특성 연구)

  • Park, Ki-Tae;Chun, Jeong-Hwan;Choi, Dong-Woong;Kim, Sung-Hyun
    • Journal of Hydrogen and New Energy
    • /
    • v.22 no.1
    • /
    • pp.60-68
    • /
    • 2011
  • [ $ZrO_2-TiO_2$ ]binary oxides with various Zr:Ti molar ratios were prepared by sol-gel method and Nafion$^{(R)}$/$ZrO_2-TiO_2$ composite membranes were fabricated for proton exchange membrane fuel cells (PEMFCs) at high temperature and low humidity. Water uptake, Ion exchange capacity (IEC), and proton conductivity of Nafion$^{(R)}$/$ZrO_2-TiO_2$ composite membranes were characterized and these composite membranes were tested in a single cell at $120^{\circ}C$ with various relative humidity (R.H.) conditions. The obtained results were compared with the unmodified membranes (Nafion$^{(R)}$ 112 and Recast Nafion$^{(R)}$). A Nafion$^{(R)}$/$ZrO_2-TiO_2$ composite membrane with 1:3 of Zr:Ti molar ratio showed the highest performance. The performance showed 500 mW/$cm^2$ (0.499V) at $120^{\circ}C$, 50% R. H., and 2 atm.

Growth Properties of Carbon nanowall according to the Reaction Gas Ratio (반응가스 비율에 따른 탄소나노월의 성장특성)

  • Kim, Sung-Yun;Kang, Hyunil;Choi, Won Seok;Joung, Yeun-Ho;Lim, Yonnsik;Yoo, Youngsik;Hwang, Hyun Suk;Song, Woo-Chang
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.63 no.4
    • /
    • pp.351-355
    • /
    • 2014
  • Graphite electrodes are used for secondary batteries, fuel cells, and super capacitors. Research is underway to increased the reaction area of graphite electrodes used carbon nanotube (CNT) and porous carbon. CNT is limited to device utilization in order to used a metal catalyst by lack of surface area to improve. In contrast carbon nanowall (CNW) is chemically very stable. So this paper, microwave plasma enhanced chemical vapor deposition (PECVD) system was used to grow carbon nanowall (CNW) on Si substrate with methane ($CH_4$) and hydrogen ($H_2$) gases. To find the growth properties of CNW according to the reaction gas ratio, we have changed the methane to hydrogen gas ratios (4:1, 2:1, 1:2, and 1:4). The vertical and surficial conditions of the grown CNW according to the gas ratios were characterized by a field emission scanning electron microscopy (FE-SEM) and Raman spectroscopy measurements showed structure variations.