• Title/Summary/Keyword: hydrogen fuel cells

Search Result 428, Processing Time 0.028 seconds

Operation of A Small MCFC Stack Using New Designed Circular Separator (새로운 원반형 구조의 분리판을 사용한 소형 용융탄산염 스택의 운전)

  • Han, Jonghee;Roh, Gil-Tae;Yoon, Sung Pill;Nam, Suk Woo;LIm, Tae Hoon;Hong, Seong Ahn
    • Journal of Hydrogen and New Energy
    • /
    • v.14 no.3
    • /
    • pp.229-235
    • /
    • 2003
  • A 50W class MCFC stack was operated in order to test a new design of the circular shaped separator. in the new design, the anode gas was supplied into the stack and was exhausted out of the stack after the anode reaction. The exhausted gas was reacted with the cathode gas supplied with excess oxygen in the vessel in which the stack was placed. Then the reacted gas flowed into the cathode side of the stack and was exhausted through the outlet located in the center of the stack. The average voltage of the single cells in the stack was 0.835V under the current density of $150mA/cm^2$, initially, and the degradation rate of the stack voltage was 1.7%/1,000h. High stack voltage with good stability of the present stack was due to the small temperature gradient in the stack. The small temperature gradient as well as the easiness of temperature control was the result of the new configuration of the separator which utilized the heat of the combustion reaction between anode outlet gas and the cathode inlet gas for heating the stack.

Mo,Cu-doped CeO2 as Anode Material of Solid Oxide Fuel Cells (SOFCs) using Syngas as Fuel

  • Diaz-Aburto, Isaac;Hidalgo, Jacqueline;Fuentes-Mendoza, Eliana;Gonzalez-Poggini, Sergio;Estay, Humberto;Colet-Lagrille, Melanie
    • Journal of Electrochemical Science and Technology
    • /
    • v.12 no.2
    • /
    • pp.246-256
    • /
    • 2021
  • Mo,Cu-doped CeO2 (CMCuO) nanopowders were synthesized by the nitrate-fuel combustion method aiming to improve the electrical and electrochemical properties of its Mo-doped CeO2 (CMO) parent by the addition of copper. An electrical conductivity of ca. 1.22·10-2 S cm-1 was measured in air at 800℃ for CMCuO, which is nearly 10 times higher than that reported for CMO. This increase was associated with the inclusion of copper into the crystal lattice of ceria and the presence of Cu and Cu2O as secondary phases in the CMCuO structure, which also could explain the increase in the charge transfer activities of the CMCuO based anode for the hydrogen and carbon monoxide electro-oxidation processes compared to the CMO based anode. A maximum power density of ca. 120 mW cm-2 was measured using a CMCuO based anode in a solid oxide fuel cell (SOFC) with YSZ electrolyte and LSM-YSZ cathode operating at 800℃ with humidified syngas as fuel, which is comparable to the power output reported for other SOFCs with anodes containing copper. An increase in the area specific resistance of the SOFC was observed after ca. 10 hours of operation under cycling open circuit voltage and polarization conditions, which was attributed to the anode delamination caused by the reduction of the Cu2O secondary phase contained in its microstructure. Therefore, the addition of a more electroactive phase for hydrogen oxidation is suggested to confer long-term stability to the CMCuO based anode.

Durability Evaluation of Air-Cooled Proton Exchange Membrane Fuel Cells Stacks by Repeated Start-Up/Shut-Down (시동/정지반복에 의한 공랭식 고분자연료전지 스택 내구성 평가)

  • YOO, DONGGEUN;KIM, HYEONSUCK;OH, SOHYEONG;PARK, KWON-PIL
    • Journal of Hydrogen and New Energy
    • /
    • v.32 no.5
    • /
    • pp.315-323
    • /
    • 2021
  • The air-cooled proton exchange membrane fuel cells (PEMFC) stacks, which is widely used in small-sized PEMFC, have a problem in that durability is weaker than that of the water-cooled type. Because the cathode is open to the atmosphere and the structural problem of the air-cooled stack, which is difficult to maintain airtightness, is highly likely to form a hydrogen/air boundary during start-up/shut-down (SU/SD). Through the accelerated durability evaluation of the 20 W air-cooled PEMFC stack, the purpose of this study was to find out the cause of the degradation of the stack and to contribute to the improvement of the durability of the air-cooled PEMFC stack. In this study, it was possible to evaluate durability in a relatively short time by reducing 20-30% of initial performance by repeating SU/SD 1,000 to 1,200 times on an air-cooled PEMFC stack. After disassembling the stack, each cell was divided into two and the performance analysis showed that the electrode degradation was more severe in the anode outlet membrane electrode assembly (MEA), which facilitates air inflow as a whole, than in the inlet MEA. It was shown that the cathode Pt was dissolved/precipitated to deteriorate the polymer ionomer inside the membrane.

Durability Evaluation of Cathode Open-type Proton Exchange Membrane Fuel Cells Stacks (Cathode 개방형 고분자연료전지 스택 내구성 평가)

  • Yoo, Donggeun;Kim, Hyeonsuck;Oh, Sohyeong;Park, Kwon-Pil
    • Korean Chemical Engineering Research
    • /
    • v.60 no.1
    • /
    • pp.12-19
    • /
    • 2022
  • Cathode open-type PEMFC (Proton Exchange Membrane Fuel Cells) stacks, which are widely used in small transport-type PEMFC, have a problem with poor durability. Through the accelerated durability test of the 13-cell PEMFC stack, we tried to find the cause of the degradation of the stack and to contribute to the improvement of the durability of the cathode open stack. A hydrogen/air boundary is formed during start-up/shut-down (SU/SD) due to the structural problem of the cathode open stack in which the cathode is open to the atmosphere and it is difficult to maintain airtightness, thereby deteriorating the cathode. In this study, it was possible to evaluate the durability in a relatively short time by reducing the 54% of the initial performance by repeating SU/SD 1,800 times on the cathode open stack. After dismantling the stack, each cell was divided into two and the performance was analyzed. Overall, the anode outlet MEA, which facilitates air inflow, showed more severe electrode deterioration than the inlet MEA, confirming that the hydrogen/air boundary formation during SU/SD is the main cause of degradation.

The Optimization of Biohydrogen Production Medium by Dark Fermentation with Enterobacter aerogenes (Enterobacter aerogenes의 혐기발효에 의한 바이오 수소 생산 배지의 최적화)

  • Kim, Kyu-Ho;Choi, Young-Jin;Kim, Eui-Yong
    • KSBB Journal
    • /
    • v.23 no.1
    • /
    • pp.54-58
    • /
    • 2008
  • Hydrogen is considered as an energy source for the future due to its environmentally friendly use in fuel cells. A promising way is the biological production of hydrogen by fermentation. In this study, the optimization of medium conditions which maximize hydrogen production from Enterobacter aerogenes KCCM 40146 were determined. As a result, the maximum attainable cumulative volume of hydrogen was 431 $m{\ell}$ under the conditions of 0.5M potassium phosphate buffer, pH 6.5 medium containing 30 g/L glucose. The best nitrogen sources were peptone and tryptone for the cell growth as well as hydrogen production. The control of cell growth rate was found to be a important experimental parameter for effective hydrogen production

Recent advances in Studies of the Activity of Non-precious Metal Catalysts for the Oxygen Reduction Reaction in Polymer Electrolyte Membrane Fuel Cells (고분자 전해질 연료전지용 산소환원반응을 위한 비백금촉매의 활성에 대한 최신 연구 동향)

  • Yoon, Ho-Seok;Jung, Won Suk;Choe, Myeong-Ho
    • Journal of the Korean Electrochemical Society
    • /
    • v.23 no.4
    • /
    • pp.90-96
    • /
    • 2020
  • Polymer electrolyte membrane fuel cells, which convert the chemical reaction energy of hydrogen into electric power directly, are a type of eco-friendly power for future vehicles. Due to the sluggish oxygen reduction reaction and costly Pt catalyst in the cathode, the research related to the replacement of Pt-based catalysts has been vitally carried out. In this case, however, the performance is significantly different from each other and a variety of factors have existed. In this review paper, we rearrange and summarize relevant papers published within 5 years approximately. The selection of precursors, synthesis method, and co-catalyst are represented as a core factor, while the necessity of research for the further enhancement of activity may be raised. It can be anticipated to contribute to the replacement of precious metal catalysts in the various fields of study. The final objective of the future research is depicted in detail.

A Study on High Efficiency Power Conditioning System for Safety Operation of PEMFC_type Fuel Cell Generation System (고분자전해질형 연료전지 발전시스템의 안전운전을 위한 고성능 전력변환기에 관한 연구)

  • Kwak Dong-Kurl
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.13 no.1 s.38
    • /
    • pp.57-61
    • /
    • 2006
  • Fuel cells are direct current (DC) power generators. They generate electricity through an electrochemical process that converts the energy stored in a fuel directly into electricity. Fuel cells have many benefits, which produce no particulate matter, nitrogen or sulfur oxides. And they have few moving parts and produce little or no noise. When fueled by hydrogen, they yield only heat and water as byproducts. Their wide application can reduce our dependence on fossil fuels and foreign sources of petroleum. This paper is studied on a high efficiency power conditioning system (PCS) applied to the proton exchange membrane fuel cell (PEMFC) generation system. This paper is designed to a novel PCS circuit topology of high efficiency. Some experimental results of the proposed PCS is confirmed to the validity of the analytical results.

  • PDF

Self-sustainable Operation of a 1kW class SOFC System (1kW급 고체산화물 연료전지 발전시스템 자열운전)

  • Lee, Tae-Hee;Choi, Jin-Hyeok;Park, Tae-Sung;Yoo, Young-Sung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.57-60
    • /
    • 2008
  • KEPRI has studied planar type SOFC stacks using anode-supported single cells and kW class co-generation systems for residential power generation. A 1kW class SOFC system consisted of a hot box part, a cold BOP part and a water reservoir. A hot box part contains a SOFC stack made up of 48 single cells and ferritic stainless steel interconnectors, a fuel reformer, a catalytic combustor and heat exchangers. Thermal management and insulation system were especially designed for self-sustainable operation. A cold BOP part was composed of blowers, pumps, a water trap and system control units. When a 1kW class SOFC system was operated at $750^{\circ}C$ with hydrogen after pre-treatment process, the stack power was 1.2kW at 30 A and 1.6kW at 50A. Turning off an electric furnace, the SOFC system was operated using hydrogen and city gas without any external heat source. Under self-sustainable operation conditions, the stack power was about 1.3kW with hydrogen and 1.2kW with city gas respectively. The system also recuperated heat of about 1.1kW by making hot water.

  • PDF

Fabrication and Evaluation Properties of Micro-Tubular Solid Oxide Fuel Cells (SOFCs) (마이크로 원통형 SOFC 제작 및 특성평가)

  • Kim, Hwan;Kim, Wan-Je;Lee, Jong-Won;Lee, Seung-Bok;Lim, Tak-Hyoung;Park, Seok-Joo;Song, Rak-Hyun;Shin, Dong-Ryul
    • Korean Chemical Engineering Research
    • /
    • v.50 no.4
    • /
    • pp.749-753
    • /
    • 2012
  • In present work, anode support for micro-tubular SOFC was fabricated with outer diameter of 3 mm and characterized with microstructure, mechanical properties and gas permeability. The microstructure of surface and cross section of a porous anode support were analyzed by using SEM (Scanning Electron Microscope) image. The gas permeability and the mechanical strength of anode support was measured and analysed by using differential pressure at the flow rates of 50, 100, 150 cc/min. and using universal testing machine respectively. The unit cell composed of NiO-YSZ, YSZ, YSZ-LSM/LSM/LSCF was fabricated and operated with reaction temperature and fuel flow rate and showed maximum power density of $1095mW/cm^2$ on the condition of $800^{\circ}C$. The performance of single cell for micro-tubular SOFC increased with the increasing the reaction temperature due to the decrement of ohmic resistance of cell by the increment of the ionic conductivity of electrolyte through the evaluation of electrochemical impedance analysis for single cell with reaction temperature.

A Study on the Development of H2 Fuel Cell Education Platform: Meta-Fuelcell (연료전지 교육 플랫폼 Meta-Fuelcell 개발에 관한 연구)

  • Duong, Thuy Trang;Gwak, Kyung-Min;Shin, Hyun-Jun;Rho, Young-J.
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.5
    • /
    • pp.29-35
    • /
    • 2022
  • This paper proposes a fuel cell education framework installed on a Metaverse environment, which is to reduce the burden of education costs and improve the effect of education or learning. This Meta-Fuel cell platform utilizes the Unity 3D Web and enables not only theoretical education but also hands-on training. The platform was designed and developed to accommodate a variety of unit education contents, such as ppt documents, videos, etc. The platform, therdore, integrates ppt and video demonstrations for theoretical education, as well as software content "STACK-Up" for hands-on training. Theoretical education section provides specialized liberal arts knowledge on hydrogen, including renewable energy, hydrogen economy, and fuel cells. The software "STACK-Up" provides a hands-on practice on assembling the stack parts. Stack is the very core component of fuel cells. The Meta-Fuelcell platform improves the limitations of face-to-face education. It provides educators with the opportunities of non-face-to-face education without restrictions such as educational place, time, and occupancy. On the other hand, learners can choose educational themes, order, etc. It provides educators and learners with interesting experiences to be active in the metaverse space. This platform is being applied experimentally to a education project which is to develop advanced manpower in the fuel cell industry. Its improvement is in progress.