• Title/Summary/Keyword: hydrogen fuel cell vehicle

Search Result 207, Processing Time 0.022 seconds

FUEL CELL ELECTRIC VEHICLES: RECENT ADVANCES AND CHALLENGES - REVIEW

  • Yang, W.C.
    • International Journal of Automotive Technology
    • /
    • v.1 no.1
    • /
    • pp.9-16
    • /
    • 2000
  • The growing concerns on environmental protection have been constantly demanding cleaner and more energy efficient vehicles without compromising any conveniences provided by the conventional vehicles. The recent significant advances in proton-exchange-membrane (PEM) fuel cell technology have shown the possibility of developing such vehicles powered by fuel cells. Several prototype fuel cell electric vehicles (FCEV) have been already developed by several major automotive manufactures, and all of the favorable features have been demonstrated in the public roads. FCEV is essentially a zero emission vehicle and allows to overcome the range limitation of the current battery electric vehicles. Being motivated by the laboratory and field demonstrations of the fuel cell technologies, variety of fuel cell alliances between fuel cell developers, automotive manufactures, petroleum companies and government agencies have been formed to expedite the realization of commercially viable FCEV. However, there still remain major issues that need to be overcome before it can be fully accepted by consumers. This paper describes the current fuel cell vehicle development status and the staggering challenges for the successful introduction of consumer acceptable FCEVS.

  • PDF

Development of the Integrated Fuel Cell Monitoring System (통합 연료전지모니터링 시스템 개발)

  • KIM, HYUNJUN;YEOM, SANGCHUL;AHN, BYUNGKI;KIM, SAEHOON;KUM, YEONGBEOM
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.26 no.3
    • /
    • pp.241-246
    • /
    • 2015
  • The interest of New Renewable Energy is increasing globally because of the increment of the uncertainty for the energy's supply and demand, and the increment of the frequency in weather anomaly and its damages. One of the New Renewable Energies, Hydrogen receives attention as the future energy that can deal with global environment regulation. Fuel Cell Electric Vehicle (FCEV) is an environment-friendly vehicle that uses Hydrogen as fuel. The electric power for FCEV is generated by chemical reaction with Oxygen from the air and Hydrogen. Hyundai Motor Company (HMC) has developed a proprietary fuel cell system since 2005. In 2012, HMC is the first car maker that mass-produces the ix35 FCEV to the worldwide such as North America, Europe, etc. In order to develop and improve the FCEV technology, data acquisition and analysis of the driving vehicle information is essential. Therefore, the monitoring system is developed, which is consist of datalogger, Automatic Vehicle Location (AVL) server and main server. Especially, WCDMA technology is integrated into the system which enables the data analysis without any restriction of time and region. The main function of the system is the analysis of the driving pattern and the component durability, and the safety monitoring. As a result, ix35 FCEV has successfully developed by using the developed monitoring system. The system is going to take an advantage of development in the future FCEV technology.

An Integrated Humidification System for a Fuel Cell Vehicle (연료전지 자동차용 복합형 가습시스템에 관한 연구)

  • Kim, Hyun-Yoo;Kwon, Hyuck-Ryul;Seo, Sang-Hoon;Park, Yong-Sun;Ahn, Byung-Ki
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.21 no.6
    • /
    • pp.547-552
    • /
    • 2010
  • In this study, we suggested an integrated humidification system for a fuel cell electric vehicle (FCEV) as an efficient method of humidification under the various driving condition of the fuel cell vehicle and system. It is improving air humidification system combined the existing membrane humidifier and water injection. As a result, we verified it through experiments and the vehicle test and could get a result of improvement of humidification performance. The results show that an integrated humidification system is a useful method for FCEV applications.

Study on the Electric Insulation Characteristics in a Fuel Cell Vehicle (연료전지 차량의 전기적 절연 특성에 관한 연구)

  • Yu, Jung-Han;kim, Duck-Whan;Kim, Ju-Han;Jeong, Kwi-Seong;Kum, Young-Bum;Kim, Sae-Hoon;Ahn, Deuk-Kuen
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.23 no.2
    • /
    • pp.150-155
    • /
    • 2012
  • Polymer Electrolyte Membrane Fuel Cell (PEMFC) stack power output is needed to be approximately 100 kW to meet the requirements of automotive applications. In order to secure the electric safety for drivers, passengers and mechanics, it is very important to understand phenomena of an electric insulation in a fuel cell vehicle. In this study, we studied the electric insulation properties and the insulation resistance of stack, system and vehicle in the field of fuel cell was estimated at the applied voltage of 500 V, respectively. Also we discussed the insulation factors such as the conductivity of coolant, the element of vehicle design and the intrinsic resistance of the vehicle components.

Demonstration Results of Fuel Cell Buses of Hyundai Motor Company (현대자동차 연료전지버스 실증 운영 결과)

  • Park, Jeongkyu;Lee, Seungyoon;Kim, Donghoon;Jin, Youngpin;Park, Jongjin;Kim, Saehoon
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.25 no.3
    • /
    • pp.264-270
    • /
    • 2014
  • Fuel cell technology is the most representative area of alternative energy field on vehicle industry according to the limitation of petroleum resources. In recent years, the technology of fuel cell vehicles has made rapid progress, Hyundai Motor Company (HMC) reached to mass production of the Tucson ix hydrogen fuel cell vehicles first in the world. In addition, HMC is accelerating the development of hydrogen fuel cell buses, which have a number of advantages for hydrogen infrastructure and mass transport personnel. In this study, we examined potential of the commercialization through the demonstration of hydrogen fuel cell buses. As a result, we identified that the mass-production possibility of FCB has high potential and HMC's technology will lead to fuel cell bus industry.

Power System Development of Unmanned Aerial Vehicle using Proton Exchange Membrane Fuel Cell (고분자 전해질 연료전지를 이용한 무인비행체 동력시스템 설계)

  • Jee, Yeong-Kwang;Sohn, Young-Jun;Park, Gu-Gon;Kim, Chang-Soo;Choi, Yu-Song;Cho, Sung-Baek
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.23 no.3
    • /
    • pp.250-255
    • /
    • 2012
  • In this paper, the development and performance analysis of a fuel cell-powered unmanned aerial vehicle is described. A fuel cell system featuring 1 kW proton exchange membrane fuel cell combined with a highly pressurized fuel supply system is proposed. For the higher fuel consumption efficiency and simplification of overall system, dead-end type operation is chosen and each individual system such as purge system, fuel supply system, cooling system is developed. Considering that fluctuation of exterior load makes it hard to stabilize fuel cell performance, the power management system is designed using a fuel cell and lithium-ion battery hybrid system. After integration of individual system, the performance of unmanned aerial vehicle is analyzed using data from flight and laboratory test. In the result, overall system was properly operated but for more duration of flight, research on weight lighting and improvement of fuel efficiency is needed to be progressed.

The Evaluation of Fire Reliability for the High Pressure Hydrogen Storage System of Fuel Cell Vehicle (I) (연료전지자동차의 고압수소저장시스템 국부화재 신뢰성 평가 (I))

  • Kim, Sang-Hyun;Choi, Young-Min;Hang, Ki-Ho;Shim, Ji-Hyun;Hang, In-Cheol;Lim, Tae-Won
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.4
    • /
    • pp.520-526
    • /
    • 2011
  • In recent years, it is very important that hydrogen storage system is safe for user in any circumstances in case of crash and fire. Because the hydrogen vehicle usually carry high pressurized cylinders, it is necessary to do safety design for fire. The Global Technical Regulation (GTR) has been enacted for localized and engulfing fire test. High pressure hydrogen storage system of fuel cell electrical vehicles are equipped with Thermal Pressure Relief Device (TPRD) installed in pressured tank cylinder to prevent the explosion of the tank during a fire. TPRDs are safety devices that perceive a fire and release gas in the pressure tank cylinder before it is exploded. In this paper, we observed the localized and engulfing behavior of tank safety, regarding the difference of size and types of the tanks in accordance with GTR.

The Role of Government to Supply Fuel Cell Electric Vehicle in Korea and Japan (수소연료전지자동차 보급을 위한 정부의 역할: 한국과 일본의 사례를 중심으로)

  • SON, MINHEE;NAM, SUKWOO;KIM, KYUNGNAM
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.27 no.1
    • /
    • pp.71-82
    • /
    • 2016
  • A fuel cell electric vehicle (FCEV) could be an alternative solution to gasoline powered vehicles. The Korean and Japanese governments have played the midwifery role in the development of the FCEV industry. This study explores the difference in policy goals for FCEV between the two countries. Koreans recognized that FCEV was innovative technology and put forward the notion of technology pre-occupancy. Whereas, the Japanese government discovered that FCEV was one way to apply hydrogen mechanisms, so they identified the supply of hydrogen as one of the industries of interest, and have played the demiurge role. This study suggests that the role of government is to introduce eco-friendly vehicles, using the cases of Korean and Japanese governments, who introduced FCEV to the world first.

Fuel Cell Powered UAV with NaBH4 as a Hydrogen Source

  • Kim, Tae-Gyu;Shim, Hyun-Chul;Kwon, Se-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.579-582
    • /
    • 2008
  • PEM Fuel cell system was designed and constructed to use as a power source of unmanned aerial vehicles(UAV) in the present study. Sodium borohydride was selected as a hydrogen source and was decomposed by catalytic hydrolysis reaction. Fuel cell system consists of a fuel cell stack, a hydrogen generation system(HGS), and power management system(PMS). HGS was composed of a catalytic reactor, micropump, fuel cartridge, and separator. Hybrid power system between lithium-polymer battery and fuel cell was developed. The fuel cell system was integrated and packaged into a blended wing-body UAV. Energy density of the total system was 1,000 $W{\cdot}hr/kg$ and high endurance more than 5 hours was accomplished in the ground tests.

  • PDF

Measurements and Numerical Analysis of Electric Cart and Fuel Cell to Estimate Operating Characteristic of FCEV (연료전지 자동차의 주행성능 예측을 위한 전기자동차 및 연료전지의 성능실험과 수학적 모델링)

  • Cho, Yong-Seok;Kim, Duk-Sang;An, Seok-Jong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.5
    • /
    • pp.65-72
    • /
    • 2006
  • In new generation vehicle technologies, a fuel cell vehicle becomes more important, by virtue of their emission merits. In addition, a fuel cell is considered as a major source to generate the electricity for vehicles in near future. This paper focuses on modeling of not only an electric vehicle and but also a fuel cell vehicle to estimate performances. And an EV cart is manufactured to verify the modeling. Speed, voltage, and current of the vehicle and modeling are compared to estimate them at acceleration test and driving mode test. The estimations are also compared with the data of the Ballard Nexa fuel cell stack. In order to investigate a fuel cell based vehicle, motor and fuel cell models are integrated in a electric vehicle model. The characteristics of individual components are also integrated. Calculated fuel cell equations show good agreements with test results. In the fuel cell vehicle simulation, maximum speed and hydrogen fuel consumption are estimated. Even though there is no experimental data from vehicle tests, the vehicle simulation showed physically-acceptable vehicle characteristics.