• Title/Summary/Keyword: hydrogen fuel cell vehicle

Search Result 208, Processing Time 0.027 seconds

Experimental Study on the Mutual Influence of Thermal Management System for Hydrogen Fuel Cell Vehicle (수소연료전지 자동차 열관리 시스템의 상호 영향도 분석을 위한 실험적 연구)

  • Lee, Moo-Yeon;Won, Jong-Phil;Cho, Choong-Won;Lee, Ho-Seong
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.6
    • /
    • pp.852-858
    • /
    • 2011
  • This paper is aiming to estimate the mutual influence of the stack cooling performances with the operation modes of the thermal management system for the hydrogen fuel cell vehicles. The heat capacity of the thermal management system was measured by varying the operating modes such as stack cooling heat exchanger only (Mode 1), stack cooling and electric devices cooling heat exchangers (Mode 2), and stack cooling and electric devices cooling heat exchangers with an operation of the condenser (Mode 3).As the results, Performance of the thermal management system (TMS) at Mode 3 decreased up to 34.0%, compared with the result of the Mode 1. In addition, in order to optimize the performance of TMS, the entropy change of stack cooling heat exchanger using irreversibility analysis technique was analyzed with the relationship between entropy generation and entering air velocity of the thermal management system.

Development of a Lightweight 200W Direct Methanol Fuel Cell Stack for UAV Applications and Study of its Operating Characteristics (II) (무인항공기용 200W 급 직접메탄올연료전지 경량화 스택 제작 및 작동 특성 연구 (II))

  • Kang, Kyung-Mun;Park, Sung-Hyun;Gwak, Geon-Hui;Ji, Hyun-Jin;Ju, Hyun-Chul
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.23 no.3
    • /
    • pp.243-249
    • /
    • 2012
  • A lightweight 200W direct methanol fuel cell (DMFC) stack is designed and fabricated to power a small scale Unmanned Aerial Vehicle (UAV). The DMFC stack consists of 33-cells in which membrane-electrode assemblies (MEAs) having an active area of 88 $cm^2$ are sandwiched with lightweight composite bipolar plates. The total stack weight is around 3.485 kg and stack performance is tested under various methanol feed concentrations. The DMFC stack delivers a maximum power of 248 W at 13.2 V and $71.3^{\circ}C$ under methanol feed concentration of 1.2 M. In addition, the voltage of individual cell in the 33-cell stack is measured at various current levels to ensure the stability of DMFC stack operations. The cell voltage distribution data exhibit the maximum cell voltage deviation of 28 mV at 15 A and hence the uniformity of cell voltages is acceptable. These results clearly demonstrate that DMFC technology becomes a potential candidate for small-scale UAV applications.

Development of Type3 Composite Cylinder for Fuel Cell Vehicle (연료전지 차량용 TYPE3 복합재 압력용기 개발)

  • Park, Ji-Sang;Cheung, Sang-Su;Chung, Jae-Han;Cho, Sung-Min;Kim, Tae-Wook
    • New & Renewable Energy
    • /
    • v.4 no.3
    • /
    • pp.51-57
    • /
    • 2008
  • The objective of this study is to develop and validate a compressed hydrogen storage system for fuel cell vehicles. The type3 composite cylinder consists of full wrapped composites on a seamless aluminum liner. The key technologies, including design, analysis, and optimized fabrication process for 350bar composite cylinder, were established and verified, and the facilities for fabrication and validation testing have been constructed. Prototype cylinders were fabricated and validated through burst test and ambient cycling test in accordance with international standard.

  • PDF

Performance Evaluation of Hydrogen Generation System using NaBH4 Hydrolysis for 200 W Fuel Cell Powered UAV (200 W급 연료전지 무인기를 위한 NaBH4 가수분해용 수소발생시스템의 성능평가)

  • Oh, Taek-Hyun;Kwon, Sejin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.4
    • /
    • pp.296-303
    • /
    • 2015
  • The concentration of solute in a $NaBH_4$ solution is limited due to the low solubility of $NaBO_2$. The performance of a hydrogen generation system was evaluated using various concentrations of $NaBH_4$ solution. First, a self-hydrolysis test and a hydrogen generation test for 30 min were performed. The composition of $NaBH_4$ solution was selected to be 1 wt% NaOH + 25 wt% $NaBH_4$+74wt% $H_2O$ by considering the amount of hydrogen loss, stability of hydrogen generation, $NaBO_2$ precipitation, conversion efficiency, and the purpose of its application. A hydrogen generation system for a 200 W fuel cell was evaluated for 3 h. Although hydrogen generation rate decreased with time due to $NaBO_2$ precipitation, hydrogen was produced for 3 h (conversion efficiency: 87.4%). The energy density of the 200 W fuel cell system was 263 Wh/kg. A small unmanned aerial vehicle with this fuel cell system can achieve 1.5 times longer flight time than one flying on batteries.

The Evaluation of CO Adsorbents Used in PSA Process for the Purification of Reformed Hydrogen (개질 수소 정제용 PSA 공정을 위한 CO 흡착제의 성능 평가)

  • PARK, JIN-NAM
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.27 no.6
    • /
    • pp.628-635
    • /
    • 2016
  • Natural gas reformed hydrogen is used as a fuel of fuel cell vehicle, PSA process is used for the purification of reformed hydrogen. In this study, the performance of CO adsorbent in PSA process was evaluated. Zeolite adsorbents used in the commercial PSA process is used. The physical and chemical properties of adsorbents were characterized using BET apparatus, XRD, and FE-SEM. The breakthrough apparatus modified from GC was used for the CO breakthrough experiment, the quantitative analysis of CO adsorption capacity was performed using CO breakthrough curve. Zeolite 10X and 13X showed superior CO adsorption capacity than activated alumina. The CO adsorption capacity of zeolite 10X is more than twice of zeolite 13X even the BET surface area is low. It seems that the presence of $Ca^{2+}$ cation in zeolite 10X is beneficial to the adsorption of CO.

Design Characteristics on Electric Drivetrain for Electric Vehicle Based on Driving Performance

  • Park, Ji-Seong;Jung, Sang-Yong
    • Journal of IKEEE
    • /
    • v.13 no.3
    • /
    • pp.47-54
    • /
    • 2009
  • Design consideration on electric drivetrain(E-D/T), usually referred as electric motor for driving, its compatible reduction gear, and inverter, are performed for developing electric vehicle(EV) with efficient driving performance. Universal mode of driving cycle has been used to make up the actual vehicle performance, and its results are incorporated to the design of E-D/T.

  • PDF

Energy Management and Performance Evaluation of Fuel Cell Battery Based Electric Vehicle

  • Khadhraoui, Ahmed;SELMI, Tarek;Cherif, Adnene
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.3
    • /
    • pp.37-44
    • /
    • 2022
  • Plug-in Hybrid electric vehicles (PHEV) show great potential to reduce gas emission, improve fuel efficiency and offer more driving range flexibility. Moreover, PHEV help to preserve the eco-system, climate changes and reduce the high demand for fossil fuels. To address this; some basic components and energy resources have been used, such as batteries and proton exchange membrane (PEM) fuel cells (FCs). However, the FC remains unsatisfactory in terms of power density and response. In light of the above, an electric storage system (ESS) seems to be a promising solution to resolve this issue, especially when it comes to the transient phase. In addition to the FC, a storage system made-up of an ultra-battery UB is proposed within this paper. The association of the FC and the UB lead to the so-called Fuel Cell Battery Electric Vehicle (FCBEV). The energy consumption model of a FCBEV has been built considering the power losses of the fuel cell, electric motor, the state of charge (SOC) of the battery, and brakes. To do so, the implementing a reinforcement-learning energy management strategy (EMS) has been carried out and the fuel cell efficiency has been optimized while minimizing the hydrogen fuel consummation per 100km. Within this paper the adopted approach over numerous driving cycles of the FCBEV has shown promising results.

Numerical Study on a Hydrogen Recirculation Ejector for Fuel Cell Vehicle (연료전지 수소재순환 이젝터 시스템에 관한 수치해석적 연구)

  • NamKoung, Hyuck-Joon;Moon, Jong-Hoon;Jang, Seock-Young;Hong, Chang-Oug;Lee, Kyoung-Hoon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.156-160
    • /
    • 2007
  • Ejector system is a device to transport a low-pressure secondary flow by using a high-pressure primary flow. Ejector system is, in general, composed of a primary nozzle, a mixing section, a casing part for suction of secondary flow and a diffuser. It can induce the secondary flow or affect the secondary chamber pressure by both shear stress and pressure drop which are generated in the primary jet boundary. Ejector system is simple in construction and has no moving parts, so it can not only compress and transport a massive capacity of fluid without trouble, but also has little need for maintenance. Ejectors are widely used in a range of applications such as a turbine-based combined-cycle propulsion system and a high altitude test facility for rocket engine, pressure recovery system, desalination plant and ejector ramjet etc. The primary interest of this study is to set up an applicable model and operating conditions for an ejector in the condition of sonic and subsonic, which can be extended to the hydrogen fuel cell vehicle. Experimental and theoretical investigation on the sonic and subsonic ejectors with a converging-diverging diffuser was carried out. Optimization technique and numerical simulation was adopted for an optimal geometry design and satisfying the required performance at design point of ejector for hydrogen recirculation. Also, some sonic and subsonic ejectors with the function of changing nozzle position were manufactured precisely and tested for the comparison with the calculation results.

  • PDF

Performance Analysis on a Hydrogen Recirculation Ejector for Fuel Cell Vehicle (연료전지 수소재순환 이젝터 성능 해석)

  • NamKoung, Hyuck-Joon;Moon, Jong-Hoon;Jang, Seock-Young;Hong, Chang-Oug;Lee, Kyoung-Hoon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.256-259
    • /
    • 2008
  • Ejector system is a device to transport a low-pressure secondary flow by using a high-pressure primary flow. Ejector system is, in general, composed of a primary nozzle, a mixing section, a casing part for suction of secondary flow and a diffuser. It can induce the secondary flow or affect the secondary chamber pressure by both shear stress and pressure drop which are generated in the primary jet boundary. Ejector system is simple in construction and has no moving parts, so it can not only compress and transport a massive capacity of fluid without trouble, but also has little need for maintenance. Ejectors are widely used in a range of applications such as a turbine-based combined-cycle propulsion system and a high altitude test facility for rocket engine, pressure recovery system, desalination plant and ejector ramjet etc. The primary interest of this study is to set up an applicable model and operating conditions for an ejector in the condition of sonic and subsonic, which can be extended to the hydrogen fuel cell vehicle. Experimental and theoretical investigation on the sonic and subsonic ejectors with a converging-diverging diffuser was carried out. Optimization technique and numerical simulation was adopted for an optimal geometry design and satisfying the required performance at design point of ejector for hydrogen recirculation. Also, some ejectors with a various of nozzle throat and mixing chamber diameter were manufactured precisely and tested for the comparison with the calculation results.

  • PDF

Pressure Drop Analysis on Filling of Hydrogen Fuel Cell Vehicles (수소연료전지 차량 충전에서의 압력강하 분석)

  • Hyo Min Seo;Byung Heung Park
    • Journal of the Korean Institute of Gas
    • /
    • v.27 no.1
    • /
    • pp.38-47
    • /
    • 2023
  • In the hydrogen filling process, hydrogen flows by the pressure difference between the supply pressure at a filling station and a storage tank in the vehicle, and the flow rate depends on the pressure difference. Therefore, it is essential to consider the pressure drop of hydrogen occurring during the filling process, and the efficiency of the hydrogen filling process can be improved through its analysis. In this study, the pressure drop was analyzed for a hose, a nozzle/receptacle coupling, a pipe, and a valve in a filling line. The pressure drops through hose and pipe, the nozzle,receptacle coupling, and the valve were calculated by using a equation for a straight conduit, a flow nozzle formula, and a gas flow respectively. In addition, as a result of comprehensive analysis of the pressure drop effect occurring in each component, it was found that the factor that has the greatest influence on the pressure drop in the entire filling line is the pressure drop through the valve. This study can be used to develop a model of the hydrogen filling process by analyzing hydrogen flow including hydrogen filling in the future.