• Title/Summary/Keyword: hydrogen engine

Search Result 361, Processing Time 0.026 seconds

The Experimental Research for the Combustion and Dynamic Characteristics of the Linear Engine on the Variable Spring Stiffness (압축기-연소실 일체형인 리니어엔진의 스프링 강성에 따른 연소 및 동적 특성 연구)

  • Lee, Jaewan;Oh, Yongil;Kim, Gangchul;Lim, Ocktaeck
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.23 no.6
    • /
    • pp.619-627
    • /
    • 2012
  • This study was experimentally investigated on the effects of spring stiffness applied to linear compressor chambers. The springs prevented piston head from colliding with engine cover, stored the kinetic energy and regenerated the kinetic energy. The linear engine has two combustion chambers and four compressor chamber. The combustion chamber bore size was 30 mm, maximum stroke was 31 mm and effective stroke volume was 25.45 cc respectively. The spring stiffness was varied such as 0, 0.5, 1.00, 2.9 and 14.7 N/mm. The linear engine was fueled with premixed LPG (propane 99%) and air by pre-mixture device. As an experimental result, The stroke, piston velocity and the piston frequency were increased by high spring stiffness. Also, thermal efficiency was grown. because the increased stroke made the higher compression ratio. In conclusion, electric power and efficiency were improved.

A Study on the Engine Performance of Low Level Bio-alcohol Fuels (저농도 바이오알코올 혼합연료의 엔진 성능평가 연구)

  • KIM, HYUN-JUN;LEE, HO-KIL;KIM, JAE-KON;OH, YOUNG-KYU;PARK, SUNG-WOOK
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.28 no.6
    • /
    • pp.691-696
    • /
    • 2017
  • An experimental study on engine performance and emission characteristics for bio-alcohol fuels considered as RFS fuel. The Bio-alcohol fuel were mixed ethanol and butanol and used in a 1.8 liter mpi engine. The efficiency of the BSFC is excellent in the maximum torque operation condition and the part load operation condition. As the bio-alcohol mixing ratio increased, the lambda <1 and ignition timing advanced $5^{\circ}CA$. As the mixing concentration increased, NOx emission increase and $CO_2$ emission decreased.

A Numerical Simulation for the Spring Hardness of a Free Piston Linear Engine (프리피스톤 리니어엔진의 스프링경도에 따른 수치해석연구)

  • Hung, Nguyenba;Oh, Yong-Il;Park, Kyu-El;Lim, Ock-Taeck
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.23 no.4
    • /
    • pp.404-411
    • /
    • 2012
  • This research numerically analyses the effects of the damping device on the operation characteristics of a free piston linear engine. In this paper, the free piston linear engine uses spring as a damping device. The investigated parameter is spring hardness which is varied at 0.5, 1, 2.9, and 14.7 N/mm. The effects of spring hardness on the dynamic characteristic, thermodynamic characteristic and electric power of the engine are investigated. Beside, the equivalent ratio is also changed to provide more information for this study. The simulation results show that, by increasing spring hardness from 0.5 to 14.7 N/mm, all of parameters related to dynamic characteristic such as piston velocity, acceleration, displacement, and frequency increase accordingly. Beside, the peak pressure in the cylinder and electric power are also increased when increasing spring hardness. The tendency is also observed at varied equivalent ratios.

Investigation of the Combustion and Emission Characteristics of 1-Octanol/Diesel Fuel Blends in a Direct Injection Diesel Engine (직분사 디젤 엔진에서 1-옥탄올/경유 혼합 연료의 연소 및 배기 특성 연구)

  • CHEOL-OH PARK;JEONGHYEON YANG;BEOMSOO KIM;JAESUNG KWON
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.34 no.1
    • /
    • pp.69-76
    • /
    • 2023
  • An experimental study was conducted on a 4-stroke direct injection diesel engine to examine the combustion and emission characteristics of 1-octanol/diesel fuel blends. The concentration of 1-octanol in the fuel blends was 10%, 30%, and 50% by volume. Experiments were conducted by varying the engine torque from 6 Nm to 12 Nm at the same engine speed of 2,700 rpm. Results showed that the fuel conversion efficiency increased as the 1-octanol proportion increased under most experimental conditions. However, the brake specific fuel consumption increased due to the relatively low lower heating value of 1-octanol. The smoke opacity and the concentrations of NOx and CO emissions generally decreased with brake mean effective pressure as the 1-octanol proportion increased. On the other hand, the unburned hydrocarbon concentration increased with an ascending ratio of 1-octanol.

Performance of LNT Catalyst according to the Supply Condition of Hydrogen Reductants for Diesel Engine (디젤엔진에서 수소 환원제 공급 조건에 따른 LNT 촉매 성능)

  • Park, Cheol-Woong;Kim, Chang-Gi;Choi, Young;Kang, Kern-Yong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.3
    • /
    • pp.142-148
    • /
    • 2009
  • The direct injection(DI) diesel engine has become a prime candidate for future transportation needs because of its high thermal efficiency. However, nitrogen oxides(NOx) increase in the local high temperature regions and particulate matter (PM) increases in the diffusion flame region within diesel combustion. Therefore, the demand for developing a suitable after treatment device has been increased. NOx absorbing catalysts are based on the concept of NOx storage and release making it possible to reduce NOx emission in net oxidizing gas conditions. This De-NOx system, called the LNT(Lean NOx Trap) catalyst, absorbs NOx in lean exhaust gas conditions and release it in rich conditions. This technology can give high NOx conversion efficiency, but the right amount of reducing agent should be supplied into the catalytic converter at the right time. In this research, a performance characteristics of LNT with a hydrogen enriched gas as a reductant was examined and strategies of controlling the injection and rich exhaust gas condition were studied. The NOx reduction efficiency is closely connected to the injection timing and duration of reductant. LNT can reduce NOx efficiently with only 1 % fuel penalty.

Study on Film Cooling Characteristic of a Liquid Rocket Engine using Hydrogen Peroxide/Kerosene (과산화수소/케로신 액체로켓엔진의 막냉각 특성에 관한 연구)

  • Choi, Yu-Ri;Jeon, Jun-Su;Chae, Byoung-Chan;Min, Ji-Hong;Ko, Young-Sung;Kim, Sun-Jin;Kim, Yoo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.601-604
    • /
    • 2010
  • An experimental study was carried out to investigate the effect of film cooling in a liquid rocket engine using Hydrogen peroxide/Kerosene as propellants. The heat fluxes were calculated by the measured wall temperatures on the axial direction of thrust chamber for mass flow rate of coolant and different type of film cooling rings. The flow rate of coolant was 0~20 percent of the total propellant.

  • PDF

Study of Experimental and Numerical Analysis on Behavior Characteristics of Emulsified Fuel (에멀젼연료 거동특성에 관한 실험 및 수치해석 연구)

  • Yeom, Jeong-Kuk
    • Journal of Power System Engineering
    • /
    • v.21 no.4
    • /
    • pp.34-41
    • /
    • 2017
  • Diesel engines with compression-ignition type have superior thermal efficiency, durability and reliability compared to gasoline engine. To control emitted gas from the engines, it can be applied to alternative fuel without any modification to the engine. Therefore, in this study, as a basic study for applying emulsified fuel to the actual diesel engine, analysis of spray behavior characteristics of emulsified fuel was carried out simultaneously by experimental and numerical method. The emulsified fuel consist of diesel, hydrogen peroxide, and surfactant. The surfactant for manufacturing emulsified fuel is comprised of span 80 and tween 80 mixed as 9:1 and fixed with 3% of the total volume of the emulsified fuel. In addition, six kinds of emulsified fuel(EF0, EF2, EF12, EF22, EF32, and EF42) were manufactured according to the mixing ratio of hydrogen peroxide. The droplet and spray experiments were performed to observe the behavior characteristics of the emulsified fuel. The numerical analysis was carried out using ANSYS CFX to confirm the microscopic behavior characteristics. Consequently, rapid mixture formation can be expected due to evaporation of hydrogen peroxide in emulsified fuel, and it is confirmed that Reitz&Diwakar breakup model is most suitable as breakup model to be applied to the numerical analysis.

Performance evaluation on characteristic length variation of $H_2O_2$/Kerosene bipropellant rocket engine (특성길이 변화에 따른 $H_2O_2$/Kerosene 이원추진제 로켓 엔진의 성능평가)

  • Jo, Sung-Kwon;Jang, Dong-Wuk;Kim, Jong-Hak;Yoon, Ho-Sung;Kwon, Se-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.55-62
    • /
    • 2010
  • In addition to the previous study for development of a 1,200 N-class bipropellant rocket engine with concentrated hydrogen peroxide, the effect of characteristic length and thrust measurement were experimentally evaluated. Tests with characteristic lengths of 0.95, 1.07, and 1.20 m were performed and $C^*$ and Isp efficiencies were increased as increasing characteristic length. The maximum $C^*$ and Isp efficiencies were 98.4% and 93.1% respectively. Based on the evaluation of the designed engine, the optimized characteristic length was proposed in using the engine adapted decomposed hydrogen peroxide and the engine performance at vacuum-level was evaluated using thrust and Isp efficiency at the designed equivalence ratio. As a result, 218.4 s at sea-level, 253.3 s at vacuum-level, and vacuum thrust of 1035.3 N can be estimated.

  • PDF

Performance Evaluation on Characteristic Length Variation of $H_2O_2$/Kerosene Bipropellant Rocket Engine (특성길이 변화에 따른 $H_2O_2$/Kerosene 이원추진제 로켓 엔진의 성능평가)

  • Jo, Sung-Kwon;Jang, Dong-Wuk;Kim, Jong-Hak;Yoon, Ho-Sung;Kwon, Se-Jin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.15 no.3
    • /
    • pp.1-8
    • /
    • 2011
  • In addition to the previous study for development of a 1,200 N-class bipropellant rocket engine with concentrated hydrogen peroxide, the effect of characteristic length and thrust measurement were experimentally evaluated. Tests with characteristic lengths of 0.95, 1.07, and 1.20 m were performed and $C^*$ and Isp efficiencies were increased as increasing characteristic length. The maximum $C^*$ and Isp efficiencies were 98.4% and 93.1% respectively. Based on the evaluation of the designed engine, the optimized characteristic length was proposed in using the engine adapted decomposed hydrogen peroxide and the engine performance at vacuum-level was evaluated using thrust and Isp efficiency at the designed equivalence ratio. As a result, 218.4 s at sea-level, 253.3 s at vacuum-level, and vacuum thrust of 1035.3 N can be estimated.

System Analysis of Expander Cycle Hydrogen Rocket Engine (팽창기 사이클 수소 로켓엔진의 시스템 해석)

  • Ha, Donghwi;Roh, Tae-Seong;Lee, Hyoung Jin;Yoo, Phil Hoon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.24 no.5
    • /
    • pp.21-33
    • /
    • 2020
  • In this study, the program for system analysis of an expander cycle rocket engine using liquid hydrogen as a fuel was developed. The properties of hydrogen were considered by the ratio of isomers with temperature. The analysis procedure was established with the open and closed types of the expander cycle engine and the simulation methods were suggested for each component. To validation of the analysis program, we compared the performance of the engine operating point and the analysis results performed overseas for Vinci and SE-21D, which are expander cycle engines. As a result of the analysis, the main performance factors of the system, such as the mass flow of the propellant, specific thrust, and power, except for some of the inaccurate input information, showed high accuracy with an error of around 1-2%.