• Title/Summary/Keyword: hydrogen electrode

Search Result 648, Processing Time 0.032 seconds

A Study on the Electrode Characteristics of Hypo-Stoichiometric Zr-based Hydrogen Storage Alloys

  • Lee, Sang-Min;Kim, Seoung-Hoe;Lee, Jai-Young
    • Journal of Hydrogen and New Energy
    • /
    • v.10 no.4
    • /
    • pp.197-210
    • /
    • 1999
  • The hydrogen storage performance and electrochemical properties of $Zr_{1-X}Ti_X(Mn_{0.2}V_{0.2}Ni_{0.6})_{1.8}$(X=0.0, 0.2, 0.4, 0.6) alloys are investigated. The relationship between discharge performance and alloy characteristics such as P-C-T characteristics and crystallographic parameters is also discussed. All of these alloys are found to have mainly a C14-type Laves phase structure by X-ray diffraction analysis. As the mole fraction of Ti in the alloy increases, the reversible hydrogen storage capacity decreases while the equilibrium hydrogen pressure of alloy increases. Furthermore, the discharge capacity shows a maxima behavior and the rate-capability is increased, but the cycling durability is rapidly degraded with increasing Ti content in the alloy. In order to analyze the above phenomena, the phase distribution, surface composition, and dissolution amount of alloy constituting elements are examined by S.E.M., A.E.S. and I.C.P. respectively. The decrease of secondary phase amount with increasing Ti content in the alloy explains that the micro-galvanic corrosion by multiphase formation is little related with the degradation of the alloys. The analysis of surface composition shows that the rapid degradation of Ti-substituted Zr base alloy electrode is due to the growth of oxygen penetration layer. After comparing the radii of atoms and ions in the electrolyte, it is clear that the electrode surface becomes more porous, and that is the source of growth of oxygen penetration layer while accelerating the dissolution of alloy constituting elements with increasing Ti content. Consequently, the rapid degradation (fast growth of the oxygen-penetrated layer) with increasing Ti substitution in Zr-based alloy is ascribed to the formation of porous surface oxide through which the oxygen atom and hydroxyl ion with relatively large radius can easily transport into the electrode surface.

  • PDF

Characterization of Carbon Nanofiber Electrode with different Ketjenblack Conducting Material Mixing Amount Using EDLC (Ketjenblack 전도제 혼합량에 따른 EDLC용 탄소나노섬유 전극의 특성)

  • Choi, Weon-Kyung
    • Journal of Hydrogen and New Energy
    • /
    • v.19 no.2
    • /
    • pp.163-170
    • /
    • 2008
  • Carbon nanofibers with nano-sized structures were evaluated as a active material using supercacitor electrode which could store electrochemical energy reversibly. A feasibility of EDLC electrode was estimated with specific surface area measurement by BET method and mesopore structure of carbon nanofiber surface could be explained electrochemical absorption-desorption in aqueous electrolyte. A capacitance of carbon nanofiber electrode was increased gradually, depending on the ratio of Ketjenblack as a conducting material. Ketjen Black $20{\sim}25\;wt.%$ ratio in electrode was observed a suitable amount of conducting material by cyclic voltametry results.

Electrochemical Enhancement of Carbon Felt Electrode for Vanadium Redox Flow Battery with Grephene Oxide (산화그레핀을 이용한 바나듐레독스흐름전지용 카본펠트전극의 표면개질을 통한 전기화학적 활성개선)

  • LEE, KEON JOO;KIM, SUNHOE
    • Journal of Hydrogen and New Energy
    • /
    • v.28 no.2
    • /
    • pp.206-211
    • /
    • 2017
  • Carbon felt electrode for the vanadium redox-flow battery (VRFB) has been studied to see the effect of grephene oxide (GO) treatment on the surface of the carbon felt electrode. In this paper, surface of carbon felt electrodes were treated with various concentrations of grephene oxide. Electrochemical analysis, cyclic voltammetry (CV), was performed to investigate redox characteristics as electrode for VRFB. Also the effect of GO on the introduction of functional group on the surface of carbon felt electrodes were investigated using X-ray photoelectron spectroscopy (XPS), which discovered increase in the overall functional group content on the surface of carbon felts.

Electrochemical Properties of Carbon Nanofiber Electrode with Different PVDF Binder Concentration (PVDF 접합제 농도 변화와 탄소나노섬유 전극의 전기화학적 특성)

  • Choi, Weon-Kyung;Cho, Tae-Hwan
    • Journal of Hydrogen and New Energy
    • /
    • v.18 no.4
    • /
    • pp.446-451
    • /
    • 2007
  • Physicochemical properties of carbon nanofibers were evaluated as a supercacitor electrode materials could store electrochemical energy reversibly. A capacitance of carbon nanofiber electrode was increased gradually, depending on the PVDF binder ratio. A feasibility of EDLC electrode was estimated with specific surface area measurement by BET method and mesopore structure of carbon nanofiber surface could be explained electrochemical absorption-desorption in aqueous electrolyte. PVDF 5 wt.% ratio in electrode was observed a suitable binder amount by CV result.

Electrochemical Properties of Lithium Batteries with Nickel Sulfide by Ammonium Polysulfide (다황화암모늄에 의해 제조된 황화니켈을 이용한 리튬전지의 전기 화학적 특성 평가)

  • RYU, HO SUK
    • Journal of Hydrogen and New Energy
    • /
    • v.32 no.6
    • /
    • pp.612-617
    • /
    • 2021
  • In the case of a metal sulfide electrode, it is used as an anode or cathode active material in a lithium battery. The reason is that the voltage exists between 0.8 and 2.0 V via lithium electrode and the discharge and charge capacity is high. In order to manufacture nickel sulfide for electrode, which are widely used, nano-nickel powder was sulfided using ammonium polysulfide, and single-phase NiS electrodes were manufactured through heat treatment. The prepared NiS electrode had a high initial capacity of 500 mAh/g or more, and was stabilized after 20 cycles to maintain a capacity of 400 mAh/g or more until 100 cycles.

Treatment of Liquid Waste Containing Highly Concentrated Ethylenediaminetetraaceticacid by Using Underwater Electrical Discharge (수중 전기방전을 이용한 에틸렌디아민테트라아세트산 폐액의 처리)

  • Jo, Jin-Oh;Mok, Young-Sun;Kang, Duk-Won
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.5
    • /
    • pp.564-570
    • /
    • 2007
  • This study investigated the treatment of liquid waste containing highly concentrated iron(III)-ethylenediaminetetraaceticacid (Fe(III)-EDTA) of 70,000 mg/L by an underwater electrical discharge process using low voltage and high current. When AC voltage is applied to the discharging electrode with the other electrode grounded, the temperature of the liquid waste around the discharging electrode rapidly increases, and at the same time, hydrogen and oxygen gases are formed at the electrode as a result of electrochemical reactions. Ultimately, gases formed by vaporization of water and electrochemical reactions cover the electrode. Since the liquid waste is electrically conductive, it elongates the ground electrode up to the border of the gas layer, where electrical discharge occurs. Without hydrogen peroxide, electrical discharge was able to remove about 50% of Fe(III)-EDTA. As the concentration of hydrogen peroxide added increased, the removal efficiency of Fe(III)-EDTA increased. When the molar ratio of hydrogen peroxide to the initial Fe(III)-EDTA was higher than 24.7, more than 80 g of Fe(III)-EDTA was removed with an energy of 1 kWh. A comparison between tungsten and steel electrodes showed that electrode material did not affect the Fe(III)-EDTA removal. In the present underwater electrical discharge process, the removal of Fe(III)-EDTA was completed within 30 min at molar ratios of hydrogen peroxide to the initial Fe(III)-EDTA higher than 24.7.

Electrochemical Detection of Hydrogen Peroxide based on Viologen Monolayers (Viologen 박막을 이용한 과산화수소의 전기화학적 검출 특성)

  • Choi, Won-Suk;Lee, Dong-Yun;Park, Sang-Hyun;Park, Jae-Chul;Kwon, Young-Soo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.11
    • /
    • pp.2006-2010
    • /
    • 2008
  • In this paper, we fabricated a biosensor for detecting hydrogen peroxide and investigated the sensing property. We prepared a viologen and hemoglobin modified gold electrode using self-assembly and layer by layer method. The electrochemical property of the viologen derivative was characterized in 0.1 M $NaClO_4$ electrolyte solution by cyclic voltammetry. The modified electrode showed reversible electrochemical properties and high stability. From the results, the viologen can act as a charge transfer mediator for access to the electrode surface. The catalytic characteristics of the designed sensor proved that hemoglobin has been kept in its natural structure and can retain its biological activity. The designed biosensor showed a fast amperometric response, excellent linearity and low detection limit. In addition, it had high sensitivity, good reproducibility and stability.

Preparation and Clinical Application of pH-ISE(Ion Selective Electrode) Based on Tribenzylamine Ionophore (Tribenzylamine Ionophore를 이용한 pH-ISE의 제조 및 임상응용)

  • Cho, Dong-Hoe;Park, Chung-Oh
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.38 no.1
    • /
    • pp.59-64
    • /
    • 2006
  • The pH-ISE(ion selective electrode) based on tribenzylamine as a hydrogen ion carrier was prepared and its electrochemical characterization was studied. It responded linearly to hydrogen ions in the range of pH 3.1 - pH 11.0 and the Nernstian slope showed 55.0 mV/pH (at $20{\pm}0.2^{\circ}C$), it also showed a fast response time of 8 sec. When it was directly applied to human blood(pH 6.0-8.5), we could get the same satisfying results. A good reproducibility and stability were shown with the precision of 2 mV (${\pm}0.1$). The pH-ISE based on tribenzylamine exhibited biocompatibility in clinical applications.

  • PDF

A Study on the RuO2 Electrode Catalyst Prepared by Colloidal Method (콜로이드법으로 합성한 RuO2 전극촉매의 연구)

  • PARK, JIN-NAM
    • Journal of Hydrogen and New Energy
    • /
    • v.30 no.3
    • /
    • pp.193-200
    • /
    • 2019
  • $RuO_2$, $PtO_2$, and various $(Ru,Pt)O_2$ colloidal solution were prepared using modified Watanabe method. Electrodes were manufactured by dipping of Ni mesh into the colloidal solution. Manufactured electrodes were characterized by XRD, SEM, and EDS. $(Ru,Pt)O_2$ electrodes showed $RuO_2$ crystal structure and high roughness. The hydrogen evolution reaction (HER) activities were evaluated by Linear Sweep Voltammetry. 1Ru2Pt electrode showed similar activity with commercial electrode, HER potentials are -0.9 V for both.

Long-Term Performance of Lab-Scale High Temperature Electrolysis(HTE) System for Hydrogen Production (Lab-scale 고온전기분해 수소생산시스템의 장기운전 성능평가)

  • Choi, Mi-Hwa;Choi, Jin-Hyeok;Lee, Tae-Hee;Yoo, Young-Sung;Koh, Jae-Hwa
    • Journal of Hydrogen and New Energy
    • /
    • v.22 no.5
    • /
    • pp.641-648
    • /
    • 2011
  • KEPRI (KEPCO Research Institute) designed and operated the lab-scale high temperature electrolysis (HTE) system for hydrogen production with $10{\times}10cm^2$ 5-cell stack at $750^{\circ}C$. The electrolysis cell consists of Ni-YSZ steam/hydrogen electrode, YSZ electrolyte and LSCF based perovskite as air side electrode. The active area of one cell is 92.16 $cm^2$. The hydrogen production system was operated for 2664 hours and the performance of electrolysis stack was measured by means of current variation with from 6 A to 28 A. The maximum hydrogen production rate and current efficiency was 47.33 NL/hr and 80.90% at 28 A, respectively. As the applied current increased, hydrogen production rate, current efficiency and the degradation rate of stack were increased respectively. From the result of stack performance, optimum operation current of this system was 24 A, considering current efficiencies and cell degradations.