• Title/Summary/Keyword: hydrogen donor

Search Result 144, Processing Time 0.024 seconds

Photochemical Hydrogen Evolution in K4Nb6O17 Semiconductor Particles Sensitized by Phosphonated Trisbipyridine Ruthenium Complexes

  • Jung, Young-Hee;Shim, Hyun-Kwan;Kim, Hyun-Woo;Kim, Yeong-Il
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.6
    • /
    • pp.921-928
    • /
    • 2007
  • Three different phosphonated trisbipyridine ruthenium complexes, [(4-CH3-4'-CH2PO(OH)2-2,2'-bipyridine)- (bpy)2Ru]·(PF6)2 (Ru-P1), [(4-CH3-4'-CH2PO(OH)2-2,2'-bipyridine)3Ru]·(PF6)2 (Ru-P2), and [(4,4'-CH2PO- (OH)2-2,2'-bipyridine)3Ru]·(PF6)2 (Ru-P3) were synthesized and their photochemical and electrochemical properties were studied. These ruthenium complexes were strongly adsorbed on the surface of the layered metal oxide semiconductor K4Nb6O17 that was partially acid-exchanged and sensitized up to pH 10, while the carboxylated ruthenium complex, (4,4'-COOH-2,2'-bipyridine)3Ru·Cl2 (Ru-C) that was previously studied was sensitized only below pH 4. The visible light water reduction at K4Nb6O17 that was internally platinized and sensitized by these phosphonated Ru-complexes was comparatively studied using a reversible electron donor iodide.

Enhanced Photocatalytic Activity of TiO2 Modified by e-Beam Irradiation

  • Kim, Moon Su;Jo, Won Jun;Lee, Dowon;Baeck, Sung-Hyeon;Shin, Joong Hyeock;Lee, Byung Cheol
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.5
    • /
    • pp.1397-1400
    • /
    • 2013
  • The influence of electron beam irradiation on photocatalytic activity of $TiO_2$ thin films was investigated. $TiO_2$ thin films were prepared by anodization of Ti foil, and they were then subjected to an 1 MeV electron beam. Changes in physical properties and photocatalytic activity of $TiO_2$ before and after e-beam irradiation were investigated. The crystallinity of the synthesized materials was investigated by X-ray diffraction, and the oxidation states of both titanium and oxygen were determined by X-ray photoelectron spectroscopy (XPS). The density of donor ($N_d$) and flat band potential ($E_{fb}$) were investigated by Mott-Schottky analysis, and photocurrent was measured under a 1kW Xenon lamp illumination. After e-beam irradiation, significant change of Ti oxidation state was observed. $Ti^{3+}/Ti^{4+}$ ratio increased mainly due to the surface reduction by electron, and photocurrent was observed to increase with e-beam irradiation.

Properties of ZnO:Al thin films prepared by a single target sputtering

  • An, Ilsin;Ahn, You-Shin;Taeg, Lim-Won
    • Journal of Korean Vacuum Science & Technology
    • /
    • v.2 no.2
    • /
    • pp.78-84
    • /
    • 1998
  • ZnO:Al films were prepared by an rf magnetron sputtering and targets for the experiments were fabricated by sintering the mixture of ZnO and Al2O3. The most conductive film was obtained from the target with 2.0∼2.2 wt.% of Al2O3. Optical properties studied with spectroscopic ellipsometry showed band gap widening, i.e., the Burstein-Moss shift, with aluminum doping as well as with the elevation of deposition temperature. And it is found that the optical and electrical properties were related to the density of states as well as the variation of donor level. when hydrogen atoms were introduced into the films, the activation energy for the generation of oxygen vacancy was smaller for the films showing higher conductivity. This indicates that the optimum deposition condition for highly conductive ZnO:Al film has strong relation to the optimum doping condition.

  • PDF

Theoretical Studies on the Gas-Phase Pyrolysis of Esters The effect of ${\alpha}$- and ${\beta}$-methylation of Ethyl Formates

  • Ikchoon Lee;Ok Ja Cha;Bon-Su Lee
    • Bulletin of the Korean Chemical Society
    • /
    • v.11 no.1
    • /
    • pp.49-54
    • /
    • 1990
  • The gas-phase thermolysis reactions of ${\alpha}$- and ${\beta}$-methylated ethyl formates, Y = $CH-X-CHR_1CH_2R_2$ where X = Y = O or S and $R_1\;=\;R_2$ = H or $CH_3$, are investigated theoretically using the AM1 method. The experimental reactivity order is reproduced correctly by AM1 in all cases. The thermolysis proceeds through a six-membered cyclic transition state conforming to a retro-ene reaction, which can be conveniently interpreted using the frontier orbital theory of three-species interactions. The methyl group substituted at $C_{\alpha}\;or\;C_{\beta}$ is shown to elevate the ${\pi}$-HOMO of the donor fragment (Y = C) and depress the ${\sigma}^{\ast}$-LUMO of the acceptor fragment ($C_{\beta}$-H), increasing the nucleophilicity of Y toward ${\beta}$-hydrogen which in turn increases the reactivity. The two bond breaking processes of the $C_{\alpha}$-X and $C_{\beta}$-H bonds are concerted but not synchronous so that the reaction takes place in two stages as Taylor suggested. The initial cleavage of $C_{\alpha}$-X is of little importance but the subsequent scission of $C_{\beta}$-H occurs in a rate determining stage.

Chromatographic Selectivity of Cyano-Bonded Silica Columns in RPLC Based on the Linear Solvation Energy Relationships

  • Park, Jung-Hag;Jang, Myung-Duk;Kwon, Se-Mok
    • Bulletin of the Korean Chemical Society
    • /
    • v.13 no.1
    • /
    • pp.75-79
    • /
    • 1992
  • Differences in chromatographic properties in RPLC of four brands of cyano bonded silica stationary phases are rationalized in terms of the type and relative strength of the solute-stationary phase interactions, which can be readily inferred from multiple linear regression analyses of retention data for a set of standard compounds on the stationary phases under study based on the linear solvation energy relationships (LSERs). Although four brands of cyano bonded columns studied (CPS-Hypersil, Ultrasphere cyano, Spherisorb-CN and ${\mu}$-Bondapak-CN) have similar bonding density and have been prepared from monofunctional cyanopropylsilane reagents, they possess quite different, relative hydrogen bonding (HB) donor and acceptor strengths. Comparison of the retention behavior on a cyano-bonded silica column with that on an ODS column shows that there are significant differences in the strength of HB interactions between the solute and the stationary phase on the two columns with different functionalities. Information on the differences in the interaction characteristics among brands of the cyano-bonded silica columns and between the ODS and cyano-bonded columns can be utilized to optimize the selectivity for a given separation on these columns.

Hydrogenation of trans-Cinnamaldehyde with Hydrido-Carbonyl Osmium(II) Complexes of Chelating Phosphine Ligands

  • 정민교;허성;이원용;전무진
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.8
    • /
    • pp.806-810
    • /
    • 1997
  • A series of new hydridocarbonyl osmium(Ⅱ) complexes, OsHCl(CO)(PPh3)(L-L)[L-L=Ph2P(CH2)nPPh2 (n=1 (1), 2 (2), 3 (3), cis-Ph2PCH=CHPPh2 (4), and Fe(η5-C5H4PPh2)2 (5)] has been synthesized from OsHCl(CO)(PPh3)3 and chelating diphosphines. These complexes have been characterized by IR, 1H NMR and elemental analysis. The catalytic activities of these complexes both for the transfer hydrogenation of trans-cinnamaldehyde with 2-propanol as the hydrogen donor, and for the selective hydrogenation of trans-cinnamaldehyde with H2, have been examined. Complexes (1)-(5) were shown to have higher selectivities for the transfer hydrogenation of the C=O bond of aldehyde than for the transfer hydrogenation of the C=C bond of aldehyde. The selectivities for the transfer hydrogenation with 2-propanol as well as for the hydrogenation with H2 have been found to decrease in the order 3 > 5 > 2 > 4 > 1. Complex (3) has shown to possess almost 90% of the selectivity to cinnamyl alcohol for transfer hydrogenation. It is also found that there is a correlation between the ν(CO) of each complex and the hydrogenation, of the C=O bond of trans-cinnamaldehyde. Overall, the selectivities with the complexes (1)-(5) are greater for the transfer hydrogenation with 2-propanol than for the hydrogenation with H2.

Solvent Effects on the Isotropic NMR Shifts in Quinuclidine and Pyridine-Type Ligands Coordinated to the Paramagnetic Polyomometalate, $[SiW_{11}Co^{II}o_{39}]^{6-}$

  • Hyun, Jaewon;Park, Suk-Min;So, Hyunsoo
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.10
    • /
    • pp.1090-1093
    • /
    • 1997
  • The solvent effects on the isotropic NMR shifts in conformationally rigid ligands such as quinuclidine, pyridine, and 4-aminopyridine coordinated to the paramagnetic polyoxometalate, [SiW11CoⅡO39]6- (SiW11Co), are reported. For these complexes the ligand exchange is slow on the NMR time scale and pure 1H NMR signals have been observed at room temperature. The signals for the SiW11Co complexes are shifted upfield whe dimethyl sulfoxide-d6 (DMSO) is added to a D2O solution. The isotropic shifts are separated into contact and pseudocontact contributions by assuming that the contact shifts are proportional to the isotropic shifts of the same ligands coordinated to [SiW11NiⅡO39]6-. It is shown that both the contact and pseudocontact shifts decrease (the absolute values of the pseudocontact shifts increase), when D2O is replaced by DMSO. It is suggested that D2O, a strong hydrogen bond donor, withdraws electron density from [SiW11CoⅡO39]6-, increasing the acidity of the cobalt ion toward the axial ligand. When D2O is replaced by DMSO, the acidity of the cobalt ion in SiW11Co decreases, weakening the Co-N bond. Then both the contact and pseudocontact shifts are expected to decrease in agreement with the observed solvent effects.

Liquid Chromatographic Resolution of Racemic $\alpha$-Amino Acid Derivatives on an Improved $\pi$-Acidic Chiral Stationary Phase Derived from (S)-Leucine

  • 현명호;이승준;류재정
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.10
    • /
    • pp.1105-1109
    • /
    • 1998
  • A chiral stationary phase derived from (S)-N-(3,5-dinitrobenzoyl)leucine N-phenyl N-alkyl amide (CSP 2) was applied in separating the two enantiomers of various π-basic aromatic derivatives of leucine N-propyl amide in order to evaluate π-basic aromatic groups as an effective derivatizing group for the resolution of a-amino acids. Subsequently N-(3,5-dimethoxybenzoyl) group was found to be very effective as a π-basic aromatic derivatizing group. Based on these results, N-(3,5-dimethoxybenzoyl) derivatives of various a-amino N-propyl amides, N,N-diethyl amides and esters were resolved on the CSP derived from (S)-N-(3,5-dinitrobenzoyl) leucine N-phenyl N-alkyl amide (CSP 2) and the resolution results were compared with those on the CSP derived from (S)-N-(3,5-dinitrobenzoyl)leucine N-alkyl amide (CSP 1). The enantioselectivities exerted by CSP 2 were much greater than those exerted by CSP 1. In addition, racemic N-(3,5-dimethoxybenzoyl)-a-mino N,Ndiethyl amides were resolved much better than the corresponding N-(3,5-dimethoxybenzoyl)-a-mino N-propyl amides and esters on both CSPs. Based on these results, a chiral recognition mechanism utilizing the π-π donor-acceptor interaction and the two hydrogen bondings between the CSP and the analyte was proposed.

Study of Protonation Behaviour and Distribution Ratios of Hydroxamic Acids in Hydrochloric and Perchloric Acid Solutions Through Hammett Acidity Function, Bunnett-Olsen and Excess Acidity Method

  • Agarwal, Manisha;Singh, Priyanka;Pande, Rama
    • Korean Chemical Engineering Research
    • /
    • v.57 no.2
    • /
    • pp.164-171
    • /
    • 2019
  • The protonation parameters, dissociation constants ($pK_{BH^+}$) of conjugate acid, slope values (m, ${\phi}$ and $m^*$) and correlation coefficients (r) of hydroxamic acids were determined by Hammett acidity function method, Bunnett-Olsen method and excess acidity method in hydrochloric and perchloric acid solutions. Effect of acid concentration on partition and percentage protonation was also studied. $pK_{BH^+}$ values show that hydroxamic acids do not behave as Hammett bases, but hydroxamic acids behave as weak bases in strong acidic solutions. The values of $pK_{BH^+}$ obtained through Bunnett-Olsen method and excess acidity method were compared with the Hammett acidity function. ChemAxon's MarvinSketch 6.1.5 software was also used for determining $pK_a$, pI and microspecies distribution (%) of hydroxamic acids with pH. Hydrogen donor and acceptor values and logD were also obtained. The results show that N-p-chlorophenyl-4-bromobenzohydroxamic acid has the highest $pK_a$ and lowest logD values. On the contrary, N-phenyl-3,5-dinitrobenzohydroxamic acid has lowest the $pK_a$ and highest logD values.

Efficient Adsorption of Methylene Blue from Aqueous Solution by Sulfuric Acid Activated Watermelone Rind (Citrullus lanatus)

  • Lee, Seo-Yun;Choi, Hee-Jeong
    • Applied Chemistry for Engineering
    • /
    • v.32 no.3
    • /
    • pp.348-356
    • /
    • 2021
  • The lignocellulose-based dried watermelon rind (WR) was modified with sulfuric acid, namely SWR for enhancement of methylene blue (MB) adsorption from the aqueous solution. According to FT-IR analysis, after the modification of WR with sulfuric acid, the functional groups of R-SO3H, COOH and -OH groups was formated or enhanced on the surface of the WR. Moreover, the point of zero charge (pHpzc) was changed from 6.3 to 4.1 after modification, which widened the range for adsorbing of cationic dye MB. The adsorption process of MB onto the SWR was suitable for pseudo-2nd-order and Langmuir model and the maximum adsorption capacity of Langmuir was found to be 334.45 mg/g at pH 7. In adition, the adsorption process occurs through the electrostatic interaction, hydrogen bridge formation, electron donor-acceptor relationship, and 𝜋-𝜋 electron dispersing force between functional groups on the carbon surface with MB molecules. Depending on functional groups available on the SWR surface, the MB adsorption mechanism can occur in combination with various interactions.