• Title/Summary/Keyword: hydrogen current efficiency

Search Result 160, Processing Time 0.03 seconds

A Study for Development of Compact Powerpack used Hydrogen (수소를 연료로 하는 소형 파워팩 개발에 관한 연구(I))

  • Kim, Nam-Yuer;Kim, Gang-Chul;Lim, Ock-Taeck
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.21 no.4
    • /
    • pp.321-327
    • /
    • 2010
  • Current rechargeable battery cannot provide high energy density and the operational durations required. But linear engine/generators provide high energy density for portable power applications because fuel is more high density. In this paper, we suggest that basic design of powerpack using linear engine for assisting power output. Efficiency is relatively high because linear engine don't have crank mechanism compared with rotary engine. We made prototype engine and had experiments to know moving characteristic about the Linear Engine. It was possible to operate velocity at 50 Hz at the firing and pressure in cylinder was 16bar.

The comparative study of different membranes for electrolytic cell for the hydrogen peroxide generation (과산화수소 발생을 위한 전해셀용 양성자 교환 막의 비교)

  • You, Sun-Kyung;Kim, Han-Joo;Park, Soo-Gil
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1361-1362
    • /
    • 2007
  • There is great interest in the applicability of electrogenerated hydrogen peroxide to a wide variety of industrial processes, usually involving oxidation of organics. Hydrogen peroxide is now employed for the bleaching of mechanical pulp and the bleaching of chemical pulp in the pulp and paper industry, thus displacing the traditional alkaline treatments with chlorine-based chemicals. This psper reperts a comparative study of $H_{2}O_{2}$ electogeneration on gas-diffusion electrode in divided cell with several $Nafion^{(R)}$ protonexchange membranes, Russian cation-exchange membrane MK-40 and SPEEK membrane. The influence of different PEMs on electrochemical cell voltage, current efficiency and energy consumption of hydrogen peroxide electrogeneration has been stadied.

  • PDF

Reverse Current Control Method of Synchronous Boost Converter for Fuel Cell (연료전지용 동기식 부스트 컨버터의 역전류 제어방식)

  • Kim, Mi-Ji;Shin, Min-Ho;Choi, Seong-Chon;Kim, Ji-Hwan;Jung, Yong-Chae;Won, Chung-Yuen
    • Proceedings of the KIPE Conference
    • /
    • 2013.07a
    • /
    • pp.411-412
    • /
    • 2013
  • This paper proposes the reverse current control method of synchronous boost converter for fuel cell. In order to implement a high efficiency charger with the synchronous boost converter, using MOSFETs instead of diodes is essential. Using the conventional boosting method, the reverse current is generated during transient state due to the nature of fuel-cell which needs soft starting depending on the amount of hydrogen. By using PWM control method, fuel-cell can be protected from being damaged by reverse current, so synchronous boosting method can be applied to charger applications. The experimental results are shown to verify that the implementation of high-efficiency converter is possible.

  • PDF

A Study on the PEM Electrolysis Characteristics Using Ti Mesh Coated with Electrocatalysts (Ti Mesh 처리 촉매전극을 이용한 고체고분자 전해질 전기분해 특성연구)

  • Sim, Kyu-Sung;Kim, Youn-Soon;Kim, Jong-Won;Han, Sang-Do
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.7 no.1
    • /
    • pp.29-37
    • /
    • 1996
  • Alkaline water electrolysis has been commercialized as the only large-scale method for a long time to produce hydrogen and the technology is superior to other methods such as photochemical, thermochemical water splitting, and thermal decomposition method in view of efficiency and related technical problem. However, such conventional electrolyzer do not have high electric efficiency and productivity to apply to large scale hydrogen production for energy or chemical feedstocks. Solid polymer electrolyte water electrolysis using a perfluorocation exchange membrane as an $H^+$ ion conductor is considered to be a promising method, because of capability for operating at high current densities and low cell voltages. So, this is a good technology for the storage of electricity generated by photovoltaic power plants, wind generators and other energy conversion systems. One of the most important R&D topics in electrolyser is how to minimize cell voltage and maximize current density in order to increase the productivity of the electrolyzer. A commercialized technology is the hot press method which the film type electrocatalyst is hot-pressed to soild polymer membrane in order to eliminate the contact resistance. Various technologies, electrocatalyst formed over Nafion membrane surface by means of nonelectrolytic plating process, porous sintered metal(titanium powder) or titanium mesh coated with electrocatalyst, have been studied for preparation of membrane-electrocatalyst composites. In this study some experiments have been conducted at a solid polymer electrolyte water electrolyzer, which consisted of single cell stack with an electrode area of $25cm^2$ in a unipolar arrangement using titanium mesh coated with electrocatalyst.

  • PDF

Effect of Hydrogen Purge Mode on the Polymer Electrolyte Membrane Fuel Cell (PEMFC) Performance under Dead-ended Anode Operation (양극 닫힌계 작동에서 수소 배출 방법에 의한 고분자전해질 연료전지 성능 영향)

  • Kim, Junseob;Kim, Junbom
    • Applied Chemistry for Engineering
    • /
    • v.30 no.6
    • /
    • pp.687-693
    • /
    • 2019
  • As the hydrogen fuel cell market is expanded starting from hydrogen electric vehicle and power generation field, the demand for fuel cells and hydrogen increases recently. Therefore, research works on fuel cell durability and fuel efficiency are required in order to activate the fuel cell market and commercialization. A dead-ended anode system was used in this study to optimize the fuel cell performance and fuel efficiency. The effect of purge condition according to the applied current and hydrogen supply pressure on the fuel cell performance were evaluated. In addition, the influence of water back diffusion on the different electrolyte membrane thickness was analyzed. The accumulated water was purged with a solenoid valve in the case of 3% voltage decrease in the dead-ended anode system. The experiment was performed with the hydrogen supply pressure of 0.1~0.5 bar and purge duration of 0.1~1 second. A maximum fuel efficiency of 98.9% was achieved under the purge duration of 0.1 s and hydrogen supply pressure of 0.1 bar with a NR 211 (25.4 um) membrane. However, the fuel cell performance decreased in a long-term operation due to some frequent flooding. The fuel efficiency and purge interval increased due to decreased back diffusion rates of the water and nitrogen with a NR 212 (50.8 um) membrane.

Optimization of PEM Fuel Cell System Using a RSM (반응표면기법에 의한 고분자전해질형 연료전지 시스템의 최적화)

  • Xuan, Dongji;Kim, Jin-Wan;Nan, Yanghai;Ning, Qian;Kim, Young-Bae
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.3140-3141
    • /
    • 2008
  • The output power efficiency of the fuel cell system depends on the demanded current, stack temperature, air excess ratio, hydrogen excess ratio and inlet air humidity. Thus, it is necessary to determine the optimal operation condition for maximum power efficiency. In this paper, we developed a dynamic model of fuel cell system which contains mass flow model, diffusivity gas layer model, membrane hydration and electrochemistry model. In order to determine the maximum output power and minimum use of hydrogen in a certain power condition, response surface methodology (RSM) optimization based on the proposed PEMFC stack model is presented. The results provide an effective method to optimize the operation condition under varied situations.

  • PDF

Commercial Production for the Hydrogen Generation with Alkaline Electrode Cells (수소 생산을 위한 알칼라인 수전해장치 상용품 제작)

  • KIM, BO YEON;KIM, DONG JIN;KANG, EUN YOUNG;KIM, TAE WAN;SIM, HUI CHAN;LEE, TAECK HONG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.26 no.3
    • /
    • pp.206-211
    • /
    • 2015
  • For the hydrogen production, Gas Lab and Gnc make alkaline watrer electrolyzer and found optimized condition of experimental parameters of cell material and operating procedures. For the commercial production, we saved electric power consumption and caloric based efficiency with over 70%. Used cell pressures are 10 bar, 30 bar and consumed electricity is $4,000A/m^2$, 4.19 kW ($T=100^{\circ}C$) at 10 bar. Another data is $2,000A/m^2$, 3.92 kW ($T=95^{\circ}C$) at 30 bar. Applied voltage is 1.75 V ($100^{\circ}C$, 10 bar), 1.64 V ($95^{\circ}C$, 10 bar), 1.81 V ($85^{\circ}C$, 30 bar), 1.76 V ($95^{\circ}C$, 30 bar). As cell temperature increase, applied voltage has been decreased and current has been increased. The concentration of KOH solution is 30 weight %.

An Experimental Study on the Combustion and Emission Characteristics of Hydrogen Enriched LPG Fuel in a Constant Volume Chamber (정적연소기내 H2-LPG 연료의 혼합 비율에 따른 연소 및 배출가스 특성에 관한 실험적 연구)

  • Lee, Seang-Wock;Kim, Ki-Jong;Ko, Dong-Kyun;Yoon, Yu-Bin;Cho, Yong-Seok
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.23 no.3
    • /
    • pp.227-235
    • /
    • 2012
  • Finding an alternative fuel and reducing environmental pollution are the main goals for future internal combustion engines. The purpose of this study is to obtain low-emission and high-efficiency by hydrogen enriched LPG fuel in constant volume chamber. An experimental study was carried out to obtain fundamental data for the combustion and emission characteristics of pre-mixed hydrogen and LPG in a constant volume chamber (CVC) with various fractions of hydrogen-LPG blends. To maintain equal heating value of fuel blend, the amount of LPG was decreased as hydrogen was gradually added. Exhaust emissions were measured using a HORIBA exhaust gas analyzer for various fractions of hydrogen-LPG blends. The results showed that the rapid combustion duration was shortened, and the rate of heat release elevated as the hydrogen fraction in the fuel blend was increased. Moreover, the maximum rate of pressure rise also increased. These phenomena were attributed to the burning velocity which increased exponentially with the increased hydrogen fraction in the $H_2$-LPG fuel blend. Exhaust HC and $CO_2$ concentrations decreased, while NOX emission increased with an increase in the hydrogen fraction in the fuel blend. Our results could facilitate the application of hydrogen and LPG as a fuel in the current fossil hydrocarbon-based economy and the strict emission regulations in internal combustion engines.

A Study on the Generating feature of Hydrogen Oxygen Gas Using Current Controlled Pulse Power Supply (전류제어형 펄스전원장치를 이용한 수산화 가스 발생 특성 연구)

  • Yang S. H.;Kang B. H.;Jun Y. S.;Mok H. S.;Choe G. H.
    • Proceedings of the KIPE Conference
    • /
    • 2002.07a
    • /
    • pp.257-262
    • /
    • 2002
  • Water-Electrolyzed gas is a mixed gas has the constant volume ratio 2 1 Hydrogen and Oxygen gained from electrolyzed water, and it has better characteristics in the field of economy, efficiency of energy, and environmental intimacy than acetylene gas and LPG used for existing gas welding equipment. So nowdays many studies of Water-Electrolyzed gas are progressed, and commercially used as a source of thermal energy for gas welding in the industry. For Water-Electrolyzed Source, it was used diode rectifier or SCR rectifier for get DC source. This method which is not looking to improve a source for impossible current control or voltage and limited control intervals. In this paper, it was relized and designed In source of pulse type for complementing existing - DC source type, also by experiment it was acquired producting characteristics of Hydrogen -Oxygen Gas through feature of source

  • PDF

Effect of Carbon dioxide in Fuel on the Performance of PEM Fuel Cell (연료중의 이산화탄소 불순물에 의한 연료전지 성능변화 연구)

  • Seo, Jung-Geun;Kwon, Jung-Taek;Kim, Jun-Bom
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.184-187
    • /
    • 2007
  • Hydrogen could be produced from any substance containing hydrogen atoms, such as water, hydrocarbon (HC) fuels, acids or bases. Hydrocarbon fuels couold be converted to hydrogen-rich gas through reforming process for hydrogen production. Even though fuel cell have high efficiency with pure hydrogen from gas tank, it is more beneficial to generate hydrogen from city gas (mainly methane) in residential application such as domestic or office environments. Thus hydrogen is generated by reforming process using hydrocarbon. Unfortunately, the reforming process for hydrogen production is accompanied with unavoidable impurities. Impurities such as CO, $CO_2$, $H_2S$, $NH_3$, and $CH_4$ in hydrogen could cause negative effects on fuel cell performance. Those effects are kinetic losses due to poisoning of electrode catalysts, ohmic losses due to proton conductivity reduction including membrane and catalyst ionomer layers, and mass transport losses due to degrading catalyst layer structure and hydrophobic property. Hydrogen produced from reformer eventually contains around 73% of $H_2$, 20% or less of $CO_2$, 5.8% of less of $N_2$, or 2% less of $CH_4$, and 10ppm or less of CO. Most impurities are removed using pressure swing adsorption (PSA) process to get high purity hydrogen. However, high purity hydrogen production requires high operation cost of reforming process. The effect of carbon dioxide on fuel cell performance was investigated in this experiment. The performance of PEM fuel cell was investigated using current vs. potential experiment, long run (10 hr) test, and electrochemical impedance measurement when the concentrations of carbon dioxide were 10%, 20% and 30%. Also, the concentration of impurity supplied to the fuel cell was verified by gas chromatography (GC).

  • PDF