• Title/Summary/Keyword: hydrogen behaviors

Search Result 199, Processing Time 0.023 seconds

Oxidation of Ash Free Coal from Lignite and Anthracite Coals in a Molten Carbonate Fuel Cell (갈탄과 무연탄으로부터의 초청정석탄 제조 및 용융탄산염형 연료전지에서의 산화거동연구)

  • LEE, SANGWOO;KIM, YUJEONG;KIM, TAEKYUN;LEE, KIJEONG;LEE, CHOONGGON
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.27 no.1
    • /
    • pp.63-70
    • /
    • 2016
  • In this study, ash free coals(AFCs) were produced with lignite and anthracite coals in a microwave. The AFCs were analyzed with proximate analysis, fourier transform infrared spectrometry (FTIR), X-ray diffraction analysis, and thermogravimetric analysis (TGA). The extraction yields of the AFCs were 16.4 wt%, 7.6 wt% at lignite and anthracite coal, respectively. The chemical and physical properties of the AFCs were similar regardless of the original coal types. Oxidation behavior of the AFCs was investigated by supplying a mixture of 3g of AFC and 3g of electrolyte into the coin-type molten carbonate fuel cell (MCFC). For the evaluation of AFC fuel performance, electrochemical analysis of the steady-state polarization and step-chronopotentiometry were conducted based on the standard hydrogen fuel (69 mol% $H_2$, 17 mol% $CO_2$, 14 mol% $H_2O$). The AFCs showed similar electrochemical oxidation behaviors regardless of the original coal types. The overvoltage of the AFCs was larger than the hydrogen fuel, although OCV of the AFCs was higher.

Investigation of the Cryogenic Performance of the High Density Polyurethane Foam (고밀도 폴리우레탄 폼의 극저온 성능 분석)

  • Jeong-Hyeon Kim;Jeong-Dae Kim;Tae-Wook Kim;Seul-Kee Kim;Jae-Myung Lee
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.6_3
    • /
    • pp.1289-1295
    • /
    • 2023
  • Polyurethane foam insulation required for storing and transporting cryogenic liquefied gas is already widely used as a thermal insulation material for commercial LNG carriers and onshore due to its stable price and high insulation performance. These polyurethane foams are reported to have different mechanical performance depending on the density, and the density parameter is determined depending on the amount of the blowing agent. In this study, density-dependent polyurethane foam was fabricated by adjusting the amount of blowing agent. The mechanical properties of polyurethane foam were analyzed in the room temperature and cryogenic temperature range of -163℃ at 1.5 mm/min, which is a quasi-static load range, and the cells were observed through microstructure analysis. The characteristics of linear elasticity, plateau, and densification, which are quasi-static mechanical behaviors of polyurethane foam, were shown, and the correlation between density and mechanical properties in a cryogenic environment was confirmed. The correlation between mechanical behavior and cell size was also analyzed through SEM morphology analysis. Polyurethane foam with a density of 180 kg/m3 had a density about twice as high as that of a polyurethane foam with a density of 96 kg/m3, but yield strength was about 51% higher and cell size was about 9.5% smaller.

A Study on Effect of Temperature on Particle Size Distribution of Nickel Ferrite (온도의 영향에 따른 니켈페라이트의 입자 크기 분포 연구)

  • Ahn, Hyung-Kyoung;Lee, In-Hyoung;Jeong, Hyun-Jun;Park, Byung-Gi
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.6
    • /
    • pp.1768-1774
    • /
    • 2008
  • The particulate behaviors of nickel ferrite were investigated under the simulated PWR shutdown chemistry conditions. Temperature of the simulated water with concentration of 0.1 ppm Li and 2,000 ppm B was dropped from $300^{\circ}C$ to $150^{\circ}C$ with a rate of $0.625^{\circ}C/min$ and then constantly maintained at $150^{\circ}C$ under the pressure of 2,500 psi. The on-line particle counting and the concentration measurement of nickel dissolved were performed under 5, 15 and 25 cc/kg $H_2O$ dissolved hydrogen. Experimental results showed that total particle count in the simulated water was not greatly changed for three hydrogen concentrations as temperature was decreased. However, particles were smaller as temperature was decreased and then maintained constantly. The degree of variation in particle size distribution was greater at 15 cc/kg $H_2O$ dissolved hydrogen than any other dissolved hydrogen concentrations. Concentration of nickel ion was increased as temperature was decreased and was higher at 15 cc/kg $H_2O$ dissolved hydrogen than any other dissolved hydrogen concentrations. Theses results show that nickel ferrite is unstable with temperature variation and at dissolved hydrogen concentration of 15 cc/kg $H_2O$.

Effects of Additives (Hydrogen Peroxide and Ethylene Glycol) and Temperature on the Leaching of Copper from Chalcopyrite by Sulfuric Acid Solution (황산용액에 의한 황동광으로부터 구리 침출 시 첨가제(과산화수소와 에틸렌글리콜) 및 온도의 영향)

  • Kim, So-Hyun;Ahn, Jong-Gwan;Shin, Shun-Myung;Chung, Kyeong-Woo
    • Resources Recycling
    • /
    • v.25 no.5
    • /
    • pp.36-43
    • /
    • 2016
  • The leaching behaviors of copper from chalcopyrite were investigated by sulfuric acid. The leaching of copper was examined according to concentration of sulfuric acid, leaching temperature and addition of hydrogen peroxide and ethylene glycol. The concentrations sulfuric acid and hydrogen peroxide in the leaching solution were increased, the leaching efficiencies of Cu were increased. At $30 -60^{\circ}C$, the leaching efficiency of Cu was increased but it was decreased at $70 - 80^{\circ}C$. The results were due to the increasing of hydrogen peroxide decomposition in the solution above $70^{\circ}C$. In the case of ethylene glycol added at $80^{\circ}C$, the decomposition of hydrogen peroxide was decreased and the leaching efficiency was increased. As a result of SEM analysis of leaching residue after leaching, the residue was found to porous form in the case of the ethylene glycol added and then the leaching efficiency of Cu was increased by the increase of surface area under $60^{\circ}C$ with ethylene glycol.

Modeling Analysis for Thermal Performance of Solar Flat Plate Collector System Through a Year (평판형 태양열 집열기의 연중 열적 성능의 모델링 해석)

  • Kim, Gew Deok;Park, Bae Duck;Kim, Kyoung Hoon
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.25 no.5
    • /
    • pp.541-549
    • /
    • 2014
  • The monthly-average meteorological data, in particular, the monthly average daily terrestrial horizontal insolation are required for designing solar thermal energy systems. In this paper, the dynamic thermal performance of a flat plate solar collector system is numerically investigated through a year from the monthly average insolation data in Seoul. For a specified data set of solar collector system, the dynamic behaviors of total solar radiation on the tilted collector surfaces, heat loss from the collector system, useful energy and collector efficiency are analyzed from January to December by a mathematical simulation model. In addition, the monthly average daily total solar radiation, useful energy, and daily collector efficiencies through a year are estimated. The simulated results show that the average total radiation is highest in March and the useful energy is highest in October, while the total radiation and the collector efficiency are lowest in July.

Vibration Characteristics of Lean Premixed Flame Anchored by a Hydrogen Pilot Flame in a Tube (파일롯 화엄에 의해 고정된 관내 예혼합 화염의 진동 특성)

  • Guahk, Young-Tae;Oh, Kwang-Chul;Shin, Hyun-Dong
    • 한국연소학회:학술대회논문집
    • /
    • 2004.06a
    • /
    • pp.42-48
    • /
    • 2004
  • Lean laminar premixed propane and methane flames which were anchored by a hydrogen-pilot flame in a tube were investigated experimentally. The flame shapes were observed by varying mean velocity from 10cm/s to 140cm/s and equivalence ratio from 0.45 to 0.8. In this study, behaviors of flames are divided into five regions such as tail-out, flash-back, flickering, stable and vibrating flames with respect to the mean velocity and the equivalence ratio. Although the flames are unstable in both the flickering and the vibrating region, they have different characteristics such as the frequency, sound generation and creation process of flame curvature. The flickering region exists near the flammability limit and the flame flickers in a frequency of about 10Hz. When flame front is bended, the propane flame front is straightened and the methane flame front is bended more by thermo-diffusive instability. In the vibrating region, the flame vibrates emitting audible sound in a frequency of about 100Hz. In the boundary of vibrating region, the vibration of flame changes between two modes such as single frequency vibration and dual frequency vibration. Increase and decrease of vibration in each mode are determined by thermo-acoustic instability.

  • PDF

Specimen Geometry Effects on Oxidation Behavior of Nuclear Graphite

  • Cho, Kwang-Youn;Kim, Kyung-Ja;Lim, Yun-Soo;Chung, Yun-Joong;Chi, Se-Hwan
    • Carbon letters
    • /
    • v.7 no.3
    • /
    • pp.196-200
    • /
    • 2006
  • Graphite has hexagonal closed packing structure with two bonding characteristics of van der Waals bonding between the carbon layers at c axis, and covalent bonding in the carbon layer at a and b axis. Graphite has high tolerant to the extreme conditions of high temperature and neutron irradiations rather than any other materials of metals and ceramics. However, carbon elements easily react with oxygen at as low as 400C. Considering the increasing production of today of hydrogen and electricity with a nuclear reactor, study of oxidation characteristics of graphite is very important, and essential for the life evaluation and design of the nuclear reactor. Since the oxidation behaviors of graphite are dependent on the shapes of testing specimen, critical care is required for evaluation of nuclear reactor graphite materials. In this work, oxidation rate and amounts of the isotropic graphite (IG-110, Toyo Carbon), currently being used for the Koran nuclear reactor, are investigated at various temperature. Oxidation process or principle of graphite was figured out by measuring the oxidation rate, and relation between oxidation rate and sample shape are understood. In the oxidation process, shape effect of volume, surface area, and surface to volume ratio are investigated at $600^{\circ}C$, based on the sample of ASTM C 1179-91.

  • PDF

PHOTOPHYSICAL PROPERTIES OF FLUORENONES WITH CHIRAL SUBSTITUENTS AND THEIR ASYMMETRIC RECOGNITION THROUGH INTERMOLECULAR HYDROGEN BONDING INTERACTIONS IN THE EXCITED STATES

  • Aikawa, Yoshihide;Shimada, Tetsuya;Tachibana, Hiroshi;Inoue, Haruo
    • Journal of Photoscience
    • /
    • v.6 no.4
    • /
    • pp.165-170
    • /
    • 1999
  • Asymmetric recognition of chiral alcohol by fluorenone derivatives with chiral substituents through intermolecular hydrogen bonding interaction in the singlet excited state was attempted. 1-((1S, 2R, 5S)-(+)-Menthyloxycarbonyl)aminofluoren-9-one (1-MAF) and 1-((1S, 2R, 5S)-(+)-menthyloxycarbonyl)oxyfluoren-9-one (1-MOF) were synthesized and their photophysical behaviors were characterized by the measurement of absorption and fluorescence spectra, as well as the quantum yield and the lifetime of fluorescence. The excited singlet states of 1-MAF and 1-MOF were revealed to have characteristics similar to those of fluorenone, though the intramolecular CT nature was fairly suppressed as compared with 3- and 4-substituted aminofluorenones. Fluorescences of 1-MAF and 1-MOF in acetonitrile were quenched by the addition of alcohols. Differences in fluorescence quenching efficiency were hardly observe for rather small chiral alcohols such as (R)-(-)- or (S)-(+)-2-butanol, while bulky alcohols such as menthol and isopinocampheol showed chiral recognition effects in their fluorescence quenching of 1-MAF in either acetonitrile or butyronitrile.

  • PDF

A Numerical Investigation of Effects of Methanol Concentration Fluctuation in Active-type Direct Methanol Fuel Cell (DMFC) Systems (액티브형 직접메탄올연료전지 시스템의 메탄올 농도 변동이 성능에 미치는 영향성에 대한 수치적 연구)

  • Gwak, Geonhui;Ko, Johan;Lee, Suwon;Lee, Jinwoo;Peck, Donghyun;Jung, Doohwan;Ju, Hyunchul
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.24 no.6
    • /
    • pp.495-509
    • /
    • 2013
  • In this study, we develop a one-dimensional (1-D), two-phase, transient-thermal DMFC model to investigate the effect of methanol concentration fluctuation that usually occurs in active-type direct methanol fuel cell (DMFC) systems. 1-D transient simulations are conducted and time-dependent behaviors of DMFCs are analyzed under various DMFC operating conditions such as anode/cathode stoichiometry, cell temperature, and cathode inlet humidification. The simulation results indicate that the effect of methanol concentration fluctuation on DMFC performance can be mitigated by proper control of anode/cathode stoichiometry, providing a guideline to optimize operating conditions of active DMFC systems.

Electrochemical determination of hydrogen peroxide using carbon paste biosensor bound with butadiene rubber (부타디엔 고무로 결합된 탄소반죽 바이오센서를 이용한 과산화수소의 전기화학적 정량)

  • Yoon, Kil-Joong
    • Analytical Science and Technology
    • /
    • v.23 no.5
    • /
    • pp.505-510
    • /
    • 2010
  • When polybutadiene dissolved in toluene was a binder of carbon powder, the volatility of solvent just after electrode fabrication assured the mechanical solidity of the carbon paste electrode. This characteristic met the qualifications for practical use of carbon paste electrodes. A new enzyme electrode bound with butadiene rubber was constructed. In order to confirm whether it shows quantitative electrochemical behaviors or not, its electrochemical kinetic parameters, e.g. the symmetry factor, the exchange current density, the capacitance of double layer, the time constant, the maximum current, the Michaelis constant and other factors were investigated. These experimental facts showed that butadiene rubber is a recommendable binder for practical use of a carbon paste electrode.