• Title/Summary/Keyword: hydrofoil impeller

Search Result 6, Processing Time 0.013 seconds

A Study on Unsteady Flow Characteristics in a Industrial Mixer with Hydrofoil Types Impeller by PIV (PIV에 의한 산업용 교반기내 Hydrofoil 임펠러 형태에 따른 비정상 유동특성에 관한 연구)

  • Kim, Beom-Seok;Kim, Jeong-Hwan;Kang, Mun-Hu;Kim, Jin-Gu;Lee, Young-Ho
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.863-868
    • /
    • 2003
  • Mixers are used in various industrial fields where it is necessary to intimately mix two reactants in a short period of time. However, despite their widespread use, complex unsteady flow characteristics of industrial mixers are not systematic investigated. The present study aimed to clarify unsteady flow characteristics induced by various impellers in a tank. Impellers arc hydrofoil turbine and neo-hydrofoil turbine types. A high speed CCD camera and an Ar-Ion laser for illumination were adopted to clarify the time-dependent flow characteristics of the mixers. The rotating speed of impellers increased from 6Hz to 60Hz by 6Hz, The maximum velocity around neo-hydrofoil impeller is higher than the hydrofoil type impeller. These two types of turbine shows that typical flow characteristics of axial turbine and suitable for mixing high-viscosity materials.

  • PDF

A Study on the Flow Characteristics of Vertical Impeller to Improve Flocculation Efficiency (응집효율 향상을 위한 수직형 교반기의 유동특성 연구)

  • Kim, Jin-Hoon;Park, Jong-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.8 no.3 s.30
    • /
    • pp.33-41
    • /
    • 2005
  • The optimum condition is defined as one that best suits the purpose of flocculation; the number of small particles should decrease, while that of large particles should increase. The object of this research was to develop a new impeller and substitute for conventional flocculators. The flow characteristics of turbines and hydrofoil type flocculators in turbulent fluids were observed using a standard $k-{\epsilon}$ Model and a computational fluid dynamics (CFD) simulation program-FLUENT. The experiments were performed to compare PBT(Pitched Blade Turbine) flocculator with twisted hydrofoil type flocculators for velocity distribution, and floe formation at conventional water treatment plants in Korea. As a result of the CED solution, twisted hydrofoil types are similar to hydrofoil flocculators for flow characteristics without regard to the twisted angle, On the other hand, it was established that turbine flocculators are greater than hydrofoil flocculators with flow unevenness and dead zone formation. Twisted hydrofoil type-II (Angle $15{\sim}20^{\circ}$) is the most proper impeller for water flocculation from this point of view with a decreasing the dead zone, maintaining of the equivalent energy distribution and a drawing up of the sedimentation substance from the bottom of the flocculation basin.

A Study on the Flow Characteristics of Vertical Impeller to Improve Flocculation Efficiency (응집효율 향상을 위한 수직형 교반기의 유동특성 연구)

  • Kim, Jin-Hoon;Park, Jong-Ho
    • 유체기계공업학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.267-274
    • /
    • 2004
  • The optimum condition is defined as one that best suits the purpose of flocculation; the number of small particles should decrease, while that of large particles should increase. The object of this research was to develop a new impeller and substitute for conventional flocculators. The flow characteristics of turbines and hydrofoil type flocculators in turbulent fluids were observed using a standard k-$\epsilon$ Model and a computational fluid dynamics (CFD) simulation program- FLUENT The experiments were performed to compare PBT(Pitched Blade Turbine) flocculator with twisted hydrofoil type flocculators for velocity distribution, and floc formation at conventional water treatment plants in Korea. As a result of the CFD solution, twisted hydrofoil types are similar to hydrofoil flocculators for flow characteristics without regard to the twisted angle, On the other hand, it was established that turbine flocculators are greater than hydrofoil flocculators with flow unevenness and dead zone formation. Twisted hydrofoil type- II (Angle $15{\~}20^{\circ}$) is the most proper impeller for water flocculation from this point of view with a decreasing the dead zone, maintaining of the equivalent energy distribution and a drawing up of the sedimentation substance from the bottom of the flocculation basin.

  • PDF

A Study on Unsteady Flow Characteristics in Industrial Mixers with Various Types Impeller by PIV (PIV에 의한 교반기내의 산업용 임펠러형태에 따를 비정상 유동특성에 관한연구)

  • Nam, Koo-Man;Kim, Beom-Seok;Kim, Jeong-Hwan;Kang, Mun-Hu;Lee, Young-Ho
    • 유체기계공업학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.678-683
    • /
    • 2003
  • Mixers are used in various industrial fields where it is necessary to intimately mix two reactants in a short period of time. However, despite their widespread use, complex unsteady flow characteristics of industrial mixers are not systematic investigated. The present study aimed to clarify unsteady flow characteristics induced by various impellers in a tank. Impellers are pitched blade turbine and neo-hydrofoil turbine types. A high speed CCD camera and an Ar-Ion laser for illumination were adopted to clarify the time-dependent flow characteristics of the mixers. The rotating speed of impellers increased from 6Hz to 60Hz by 6Hz. The maximum velocity around PBT impeller is higher than the hydrofoil type impeller. These two types of turbine shows that typical flow characteristics of axial turbine and suitable for mixing high -viscosity materials.

  • PDF

Characteristic Features and Effect of Neo-Hydrofoil Impeller Applied in Sewage Treatment Plants (하수처리 공법별 네오하이드로포일 교반기의 적용 특성 및 효과)

  • Joo, Yoon-Sik;Son, Guntae;Bae, Youngjun;Lee, Seunghwan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.30 no.2
    • /
    • pp.187-196
    • /
    • 2016
  • In this study, a newly developed agitator with hydrofoil impeller applied to actual biological process in advanced wastewater treatment plant was evaluated. Several series of experiments were conducted in two different wastewater treatment plants where actual problems have been occurred such as the production of scums and sludge settling. For more effective evaluation, computational fluid dynamics (CFD) and measurements of MLSS (Mixed Liquor Suspended Solids) and DO (Dissolved Oxygen) were used with other measuring equipments. After the installation of one unit of vertical hydrofoil agitator in plant A, scum and sludge settling problems were solved and more than seventy percent of operational energy was saved. In case of plant B, there were three cells of each anoxic and anaerobic tanks, and each cell had one unit of submersible horizontal agitator. After the integration of three cells to one cell in each tank, and installation of one vertical hydrofoil agitator per tank, all the problems caused by improper mixing were solved and more than eighty percent of operational energy was found to be saved. Simple change of agitator applied to biological process in wastewater treatment plant was proved to be essential to eliminate scum and sludge settling problems and to save input energy.

A Development of Vibration Analysis Technique of A Mixer (교반기의 진동 해석 기술 개발)

  • Park, Jin-Ho;Lee, Jeong-Han;Kim, Bong-Soo;Ahn, Chang-Gi;Kang, Mun-Hu;Joo, Yoon-Sik
    • 유체기계공업학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.421-426
    • /
    • 2003
  • Recently, mixers are being widely used in the water purification plant in order to increase the filtration efficiency. The mixer normally consists of impeller, shaft, hub, reduction gear, and the driving motor. It is one of the key design issues to confirm that the vibration caused by the rotation of the shaft should not coincide with the natural vibration frequency of the shaft itself. The vibration characteristics of the hydrofoil type mixer, which is the most widely used in real plants are evaluated through the finite element modeling and verified by experiment using the mock-up facility. The fundamental natural frequency of the mixer's shaft is found to be around 1.8 Hz which showed in good agreement with the experiment. The higher natural frequencies to the 2nd, 3rd, and 4th modes are also verified by the experiment. Thus the developed model is to be utilized for the structural design of the real mixer system.

  • PDF