• Title/Summary/Keyword: hydroelastic vibration

Search Result 46, Processing Time 0.019 seconds

Natural Frequency of Two Rectangular Plates Coupled with Fluid (유체로 연성된 두 사각평판의 고유진동수)

  • Jeong, Kyeong-Hoon;Park, Keun-Bae
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.389.1-389
    • /
    • 2002
  • An analytical study is presented on the hydroelastic vibration of two rectangular identical plates coupled with a bounded fluid by using the finite Fourier series expansion method. It is observed that the two contrastive modes, the so called the out-of-phase and in-phase modes. All natural frequency of the in-phase modes can be predicted well by the combination of the beam modes in the air, but the natural frequency of the out-of-phase mode cannot be estimated precisely. (omitted)

  • PDF

Experimental Modal Analysis of Perforated Rectangular Plates Submerged in Water (물에 잠긴 다공 직사각평판의 실험적 모드해석)

  • Yoo, Gye-Hyoung;Lee, Myung-Gyu;Jeong, Kyeong-Hoon;Lee, Seong-Cheol
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.345.1-345
    • /
    • 2002
  • This paper dealt with an experimental study on the hydroelastic vibration of clamped perforated rectangular plates submerged in water. The penetration of holes in the plates had a triangular pattern with P/D (pitch to diameter) 1.750, 2.125, 2.500, 3.000 and 3.750. The natural frequencies of the perforated plates in air were obtained by the analytical method based on the relation between the reference kinetic and maximum potential energies and compared with the experimental results. (omitted)

  • PDF

Experimental and analytical study on hydroelastic vibration of tank (선박내 접수탱크 진동에 대한 실험/이론적 연구)

  • Kim, Kuk-Su;Cho, H.D.;Kong, Y.M.;Heo, J.H.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.96-100
    • /
    • 2008
  • In this paper, a experimental and theoretical study is carried out on the hydroelastic vibration for a rectangular bottom and side plate of tank. It is assumed that the tank wall is clamped along the plate edges. The fluid velocity potential is used for the simulation of fluid domain and to obtain the added mass due to plate vibration. It is assumed that the fluid is imcompressible and inviscid. Assumed mode method is utilized to the plate model and hydrodynamic force is obtained by the proposed approach. The coupled natural frequencies are obtained from the relationship between kinetic energies of a wall including fluid and the potential energy of the wall. The theoretical result is compared with the three-dimensional finite element method. In order to verify the result, modal test was carried out for bottom/side plate of tank model by using impact hammer. It was found the fundamental natural frequency of bottom plate is lower than that of side plate of tank and theoretical result was in good agreement with that of commercial three-dimensional finite element program.

  • PDF

Hydroelastic vibration analysis of liquid-contained rectangular tanks

  • Jeong, Kyeong-Hoon
    • Structural Engineering and Mechanics
    • /
    • v.40 no.5
    • /
    • pp.665-688
    • /
    • 2011
  • This paper presents a theoretical analysis for the free vibration of rectangular tanks partially filled with an ideal liquid. Wet dynamic displacements of the tanks are approximated by combining the orthogonal polynomials satisfying the boundary conditions, since the rectangular tanks are composed of four rectangular plates. The classical boundary conditions of the tanks at the top and bottom ends are considered, such as clamped, simply supported, and clamped-free boundary conditions. As the facing rectangular plates are assumed to be geometrically and structurally identical, the vibration modes of the facing plates of the tanks can be divided into two categories: symmetric and antisymmetric modes with respect to the planes passing through the center of the tanks and perpendicular to the free liquid surface. The liquid displacement potentials satisfying the Laplace equation and liquid boundary conditions are derived, and the wet dynamic modal functions of a quarter of the tanks can be expanded by the finite Fourier transform for compatibility requirements along the contacting surfaces between the tanks and liquid. An eigenvalue problem is derived using the Rayleigh-Ritz method. Consequently, the wet natural frequencies of the rectangular tanks can be extracted. The proposed analytical method is verified by observing an excellent agreement with three-dimensional finite element analysis results. The effects of the liquid level and boundary condition at the top and bottom edges are investigated.

Response Analysis of 3-dimensional Floating Structure Using Beam Transformation (보 변환 기법을 이용한 3차원 부유체의 응답해석)

  • Kim, Byoung-Wan;Hong, Sa-Young;Kyoung, Jo-Hyun;Cho, Seok-Kyu
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.809-814
    • /
    • 2006
  • In this paper, the modified direct method employing beam transformation technique is proposed in order to efficiently calculate hydroelastic responses of floating structure. Since the proposed method expresses the displacements of three-dimensional structure with those of transformed beam which leads to small number of equations of motion, the method is numerically efficient compared to the conventional direct method. To verify the efficiency of the proposed method a 500 m-long floating structure under wave loads is considered in numerical example. Displacements, bending moments, torsion moments and shear forces are calculated and computing tine is examined. The results are also compared with those of the conventional direct method.

  • PDF

A Experimental Study on the Hydroelastic Behavior of Large Floating Offshore Structures (대형부체구조물(大型浮體構造物)의 유(流).탄성(彈性) 연성거동에 관한 실험적 고찰)

  • Lee, Sang-Yeob
    • Journal of Korean Association for Spatial Structures
    • /
    • v.1 no.2 s.2
    • /
    • pp.101-110
    • /
    • 2001
  • A large floating structure is attracting great attention in recent years from the view of ocean space utilization. Its huge scale in the horizontal directions compared with the wavelength and relatively shallow depth make this type of floating structure flexible and its wave-induced motion be characterized by the elastic deformation. In this paper, a boundary integral equation method is proposed to predict the wave-induced dynamic response mat-like floating offshore structure. The structure is modeled as an elastic plate and its elastic deformation is expressed as a superposition of free-vibration modes in air. This makes it straightforward to expand the well-established boundary integral technique for rigid floating bodies to include the hydroelastic effects. In order to validate the theoretical analysis, we compare with the experimental result of reduced model test. Satisfactory agreement is found between theory and experiment.

  • PDF

A theoretical study on the hydroelastic behavior of Large floating offshore structures (대형부체구조물(大型浮體構造物)의 유체(流體)·탄성체(彈性體) 연성거동의 이론적 해석에 관한 연구(硏究))

  • Lee, Sang-Yeob;Rha, Young-Ho
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.4 no.4
    • /
    • pp.433-439
    • /
    • 2001
  • A large floating structure is attracting great attention in recent years from the view of ocean space utilization. Its huge scale in the horizontal directions compared with the wavelength and relatively shallow depth make this type of floating structure flexible and its wave-induced motion be characterized by the elastic deformation. In this paper, a boundary integral equation method is proposed to predict the wave-induced dynamic response mat-like floating offshore structure. The structure is modeled as an clastic plate and its elastic deformation is expressed as a superposition of free-vibration modes in air. This makes it straightforward to expand the well-established boundary integral technique for rigid floating bodies to include the hydroelastic effects. In order to validate the theoretical analysis, we compare with the experimental result of previous model test. Satisfactory agreement is found between theory and experiment.

  • PDF