• Title/Summary/Keyword: hydrodynamic and water quality modeling

Search Result 50, Processing Time 0.026 seconds

Three-dimensional Algal Dynamics Modeling Study in Lake Euiam Based on Limited Monitoring Data (제한된 측정 자료 기반 의암호 3차원 조류 예측 모델링 연구)

  • Choi, Jungkyu;Min, Joong-Hyuk;Kim, Deok-Woo
    • Journal of Korean Society on Water Environment
    • /
    • v.31 no.2
    • /
    • pp.181-195
    • /
    • 2015
  • Algal blooms in lakes are one of major environmental issues in Korea. A three-dimensional, hydrodynamic and water quality model was developed and tested in Lake Euiam to assess the performance and limitations of numerical modeling with multiple algal groups using field data commonly collected for algal management. In this study, EFDC was adopted as the basic model framework. Simulated vertical profiles of water temperature, dissolved oxygen and nutrients monitored at five water quality monitoring stations from March to October 2013, which are closely related to algal dynamics simulation, showed good agreement with those of observed data. The overall spatio-temporal variations of three algal groups were reasonably simulated against the chlorophyll-a levels of those estimated from the limited monitoring data (chlorophyll-a level and cell numbers of algal species) with the RMSEs ranging from 2.6 to $17.5mg/m^3$. Also, note that $PO_4-P$ level in the water column was a key limiting factor controlling the growth of three algal groups during most of simulation period. However, the algal modeling results were not fully attainable to the levels of observation during short periods of time showing abrupt increase in algae throughout the lake. In particular, the green algae/cyanobacteria and diatom simulations were underestimated in late June to early July and early October, respectively. The results shows that better understanding of internal algal processes, neglected in most algal modeling studies, is necessary to predict the sudden algal blooms more accurately because the concentrations of external $PO_4-P$ and specific algal groups originated from the tributaries (mainly, dam water releases) during the periods were too low to fully capture the sharp rise of internal algal levels. In this respect, this study suggests that future modeling efforts should be focused on the quantification of internal cycling processes including vertical movement of algal species with respect to changes in environmental conditions to enhance the modeling performance on complex algal dynamics.

Analysis of Flow and BOD Transport at the Downstream of Nam River Dam Using 2-D and 3-D Semi-coupled Models (2·3차원 준연계 모형을 이용한 남강댐 하류부 흐름 및 BOD 수송 해석)

  • Kim, Ji-Hoon;Song, Chang-Geun;Kim, Young-Do;Seo, Il-Won
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.3
    • /
    • pp.331-347
    • /
    • 2012
  • The downstream of the Nam River Dam is crucial region for long-term water resource planning for Busan and Gyeongnam Province. Thus, the analysis of flow behavior and water quality is necessary for the sustainable surface water management and the control of pollutant source. In this study, the flow field and BOD transport at the downstream of Nam River Dam were analyzed by incorporating 2-D water quality model, RAM4 and 3-D water quality model, WASP with the hydrodynamic model, RAM2 and EFDC, respectively. The application of 2-D flow analysis model, RAM2 showed that velocity distributions at the five transverse sections of the meandering part closely followed the measured values by ADCP, and the flow field and overflow characteristic at the submerged weir showed satisfactory performance compared with the result of 3-D EFDC model. In addition, the BOD concentration field obtained by RAM2-RAM4 coupled modeling was in good agreement with the result by EFDC-WASP model throughout the computational domain. The hydrodynamic characteristic and water quality at the downstream reach of Nam River Dam are mainly influenced by the Dam discharge, and the water quantity is closely related to the water quality control and fishery environment at the lower part of Nakdong River. Therefore, when further quantitative analysis is necessary regarding these issues, 2-D semi-coupled modeling is recommended in terms of computational effectiveness and model application aspect.

Prediction of Water Quality Effect of Watershed Runoff Change in Doam Reservoir (유역유출 변화에 따른 도암댐 저수지 수질 영향 예측)

  • Noh, Hee Jin;Kim, Jung Min;Kim, Young Do;Kang, Boo Sik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.3
    • /
    • pp.975-985
    • /
    • 2013
  • In this research, the integrated modeling system by coupling of a watershed model, a reservoir model, and a river model has been constructed in Doam reservoir watershed. Because of domestic climate characteristics, it is inevitable to construct the dam for control of flood, water use, and power production due to the heavy rain in the summer. Especially, when the dam is constructed on the stream for these kinds of purpose, it is necessary to consider this region as one watershed and also to make the integrated system for simulation and management. In this study, SWAT model was constructed for watershed modeling and EFDC-WASP model was constructed for simulating the hydrodynamic and water quality of the reservoir and the downstream in Doam dam watershed. Also, the water quality improvement equipment for demonstration was applied in the upstream part of Doam reservoir, which shows the applicability of the developed integrated modeling system.

Multidimensional Dynamic Water Quality Modeling of Organic Matter and Trophic State in the Han River System (한강수계에서의 다차원 시변화 유기물 및 영양상태 모델 연구)

  • Kim, Eun-Jung;Park, Seok-Soon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.3
    • /
    • pp.151-164
    • /
    • 2013
  • Multidimensional dynamic water quality model of organic matter and trophic state was applied to the Han River system. The model was calibrated using field measurement data obtained during the year of 2007. The model results showed reasonable performance in predicting temporal variations of TN, TP, Chl-a and BOD concentrations. The applied integrated modeling system can be effectively used to simulate water quality as well as hydrodynamic and water temperature for river-lake continuous system in the Han River. Utilizing the calibrated model, we analyzed the spatial and temporal distributions of TN, TP, Chl-a and BOD concentrations in the Han River system. The temporal variations of water quality at each river reach and lake were effectively simulated with the developed model and spatial distribution of water qualities in the Han River system could be compared. The multidimensional dynamic modeling system can simulate the water qualities of entire waterbody where Lake Paldang and the incoming flows are included using single modeling system. So it can be effectively used for integrated water quality management of the Han River system.

Three-Dimensional Water Quality Modeling of Chinhae Bay (진해만의 3차원 수질 모델링)

  • 김차겸;이필용
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.12 no.1
    • /
    • pp.1-10
    • /
    • 2000
  • A three-dimensional hydrodynamic-ecosystem model was developed and applied to Chinhae Bay which is located in the southeastern sea of Korea. The model includes a three-dimensional hydrodynamic model and an eutrophication model, and the model operates on the same grid system. The agreement between predicted and measured results is reasonably encouraging. The concentrations of the calculated COD, DIN and DIP are appeared to be very high due to the phytoplankton production and the wastewater input in the northern part of Chinhae Bay. Anoxic and hypoxic water masses in the bottom layer occur in the northern part of the bay due to the excess loading of wastewater and strong stratification, and in the western inner part of the bay due to high oxygen consumption in densely populated aquaculturing facilities. DO concentration contours show parallel to the bay entrance line, which means the importance of supplying DO by physical process from the mouth of the bay. Although both the hydrodynamic and biochemical processes play important role to form the hypoxic waters in the bottom of the inner bay, it is suggested that the hydrodynamic conditions such as the vertical and the horizontal eddy diffusivity are primarily important factors.

  • PDF

Estimation of Total Allowable Pollutant Loads Using Eco-hydrodynamic Modeling for Water Quality Management on the Southern Coast of Korea (생태계 모델에 의한 총허용 오염부하량 산정을 통한 연안해역의 수질관리)

  • Lee, Dae-In;Kim, Jong-Kyu
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.10 no.1
    • /
    • pp.29-43
    • /
    • 2007
  • For effective management of water quality on the southern coast of korea, a three-dimensional eco-hydrodynamic model is used to predict water quality in summer and to estimate the reduction rate in pollutant loads that would be required to restore water quality. Under the current environmental conditions, in particular, pollutant loadings to the study area were very high, chemical oxygen demand (COD) exceeded seawater quality criteria to comply with current legislation, and water quality was in a eutrophic condition. Therefore, we estimated reduction rates of current pollutant loads by modeling. The model reproduced reasonably the flow field and water quality of the study area. If the terrestrial COD, inorganic nitrogen and phosphorus loads were reduced by 90%, the water quality criteria of Region A were still not satisfied. However, when the nutrient loads from polluted sediment and land were each reduced by 70% simultaneously, COD and $Chl-{\alpha}$ were restored. When we reduced the input COD and nutrient loads from the Nakdong River by 80%, $Chl-{\alpha}$ and COD of Region B decreased below $10\;{\mu}g\;1^{-1}$ and $2\;mg\;1^{-1}$, respectively. The water quality criteria of Region C were satisfied when we reduced the terrestrial COD and nutrient loads by 70%. Total allowable loadings of COD and inorganic nutrients in each region were determined by multiplying the reduction rates by current pollutant loads. Estimated high reduction rates, although difficult to achieve at the present time under the prevailing environmental conditions, suggest that water pollution is very severe in this study area, and pollutant loads must be reduced within total allowable loads by continuous and long-term management. To achieve the reduction in pollutant loads, sustainable countermeasures are necessary, including the expansion of sewage and wastewater facilities, polluted sediment control and limited land use.

  • PDF

Modeling of Water Circulation and Suspended Sediment Transport in Lake Daecheong (대청호내 흐름 및 유입 부유사 확산 모델링)

  • Jung Tae Sung;Hwang Jung Hwa
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.6 no.4
    • /
    • pp.67-82
    • /
    • 2003
  • A 2-dimensional hydrodynamic model has been applied to understand water circulation pattern in Lake Deacheong. The simulation results have been used in sediment transport modeling. A sediment transport model using a particle tracking method has been developed to simulate sediment transport in the ocean, river and reservoir. The model was applied to estimate transport track of particulate pollutants in the lake. The hydrodynamic model was verified for water level variations and showed good agreements. Through the results we found out that water velocity is less than 5 cnysec for mean yearly flow and more than 120 cnysec at some points for the simulated flood flow. The incoming sediment particles in flood season reached into the Daecheong Dam. But the incoming sediment particles in the mean flow were settled down at riverbed and didn't move into the dam. These results can be used in setting up water quality management plan in the lake.

  • PDF

Application of CE-QUAL-W2 to Daecheong Reservoir for Eutrophication Simulation (대청호 부영양화 모의를 위한 CE-QUAL-W2 모델의 적용)

  • Chung, Se Woong;Park, Jae Ho;Kim, Yukyung;Yoon, Sung wan
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.1
    • /
    • pp.52-63
    • /
    • 2007
  • The objectives of this study were to setup a laterally-averaged two-dimensional eutrophication model in Daecheong Reservoir, and to validate the model under two different hydrological conditions; drought year (2001) and wet year (2004). The suggested modeling approach was found to be very effective to simulate the dynamic variations of water temperature, nutrients, dissolved oxygen, and algae in the reservoir. The model satisfactorily replicated the algal bloom that happened between Janggae (Sta.4) and Haenam (Sta.5) during summer of 2001, although the peak concentration was slightly underestimated due to the laterally averaged assumption. The allochthonous phosphorus and algae induced from upstream and So-oak stream during several rainfall events were found to be most significant sources of algal bloom in 2001. In contrast to draught year, the flood events happened during summer months of 2004 tended to remove the hypolimnetic anaerobic conditions and dilute the dissolved phosphorus in the upper reach of the reservoir, and in turn mitigated algal bloom. It implies that the impact of hydrological and hydrodynamic conditions on the reservoir water quality is highly significant, and a drought year may be more vulnerable to algal bloom in the reservoir.

Analysis of the Effects of Bathymetry Data on Hydraulic Results - Daecheong Reservoir - (저수지 모델의 지형정보 엽력자료가 수리결과에 미치는 영향 분석 - 대청호를 대상으로 -)

  • Lee, Jae-Yil;Seo, Se-Deok;Ha, Sung-Ryong
    • Journal of Environmental Impact Assessment
    • /
    • v.18 no.4
    • /
    • pp.229-234
    • /
    • 2009
  • A lot of research on the application of GIS has been conducted in the field of water quality management. The function of a geometric data acquisition for reservoir and river models, however, is not enough to satisfy multiuser' convenience. CE-QUAL-W2 is a two-dimensional(2D) longitudinal/vertical hydrodynamic and water quality model for surface water bodies, modeling eutrophication processes such as temperature-nutrient-algae and sediment relationships. The purpose of this study is to analyzing which bathymetry information affects hydraulic results. There are consisted of three scenarios under consideration. The first scenario takes into account only tribatary type data such as Heoin and Okchen river. The second scenario, Heoin river constructs to tributary and Okchen river constructs by branch. Last scenario constructs Heoin and Okchen river by branch. The RMSE error results for the first, second and third scenarios are 0.61, 0.36 and 0.28 respectively.

Application of EFDC Model to an Agricultural Reservoir for Assessing the Effect of Point Source Bypassing (농업용 저수지의 점오염원 바이패스 효과 평가를 위한 EFDC 모델의 적용)

  • Kim, Dong Min;Park, Hyung Seok;Chung, Se Woong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.58 no.6
    • /
    • pp.9-21
    • /
    • 2016
  • Agricultural reservoirs in Korea have been recognized as an emerging resource for recreational and cultural activities for residents. However, most of the reservoirs are eutrophic and showing high level of contamination with nuisance algal bloom and offensive odor during the summer. For better management and restoration of the reservoirs' water quality, scientific modeling approaches could be used to diagnose the problems and evaluate the efficacy of alternative control measures. The objectives of this study were to validate the performance of a three-dimensional (3D) hydrodynamic and water quality model (Environmental Fluid Dynamics Code, EFDC) for a eutrophic agricultural reservoir and assess the effect of bypassing of the effluent from a wastewater treatment plant on the reservoir water quality. The 3D model successfully simulated the temporal variations of water temperature, DO, TOC, nitrogen and phosphorus species and Chl-a observed in 2014 and also captured their spatial heterogeneity in the reservoir. The simulation results indicated that the point source bypassing may reduce the T-N and T-P concentrations of the reservoir by 6.6 ~ 8.2 %, and 1.7 ~ 16.8 %, respectively. The bypassing, however, showed a marginal effect on the control of TOC due to the increased algal biomass associated with the increased water retention time after bypassing as well as the lower TOC level of the effluent compared to the ambient reservoir water.