• Title/Summary/Keyword: hydrochemical

Search Result 95, Processing Time 0.022 seconds

Comparison of hydrochemical informations of groundwater obtained from two different underground storage systems

  • Lee, Jeonghoon;Kim, Jun-Mo;Chang, Ho-Wan
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.04a
    • /
    • pp.110-113
    • /
    • 2002
  • Statistical- based, principal component analysis (PCA) was applied to chemical data from two underground storage systems containing LPG to assess the usefulness of such technique at the initial stage (Pyeongtaek) or middle stage (Ulsan) of hydrochemical studies. For the first case, both natural and anthropogenic contamination characterize regional groundwater. Saline water buffered by Namyang lake affects as a natural factor, whereas cement grouting influence as an artificial factor. For the second study area, contaminations due to operation of LPG caverns, such as disinfection activity and cement grouting effect, deteriorate groundwater quality. This study indicates that principal component analysis would be particularly useful for summarizing large data set for the purpose of subsurface characterization, assessing their vulnerability to contamination and protecting recharge zones.

  • PDF

The Hydrogeological Conditions in the Granitic Area for the Research Program of HLW Disposal in Korea

  • Kim, Chunsoo;Daeseok Bae;Kim, Kyungsu;Yongkwon Koh;Kim, Geonyoung
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2004.02a
    • /
    • pp.51-59
    • /
    • 2004
  • The geological research as a part of HLW disposal program in Korea is carried out to provide necessary data for the establishment of the reference repository system in term of design and safety assessment in the crystalline rock terrains. Six deep boreholes were drilled to obtain hydrogeological and hydrochemical data from Jurassic granites in the Yuseong area, Korea. The core observation, televiewer logging and hydraulic testing were carried out during and after drilling and multi-packer system were installed in the boreholes of 500m depth for hydraulic and hydrochemical monitoring including environmental isotopes. The integration of hydrogeochemical and hydrodynamic data would be built greater confidence for the understanding of groundwater system in fractured rock mass. This geoscientific program could be possible to suggest a general guideline to develop the reference disposal concept of high-level radioactive waste in Korea.

  • PDF

균열암반 물리검층 자료의 수리지질특성에 대한 다변량 통계분석

  • 고경석;황세호;이진수;김용제;김태희
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.09a
    • /
    • pp.373-376
    • /
    • 2004
  • To investigate the vertical petrological and hydrological characteristics of fractured rock, geophysical and chemical logging were executed at 5 boreholes installed in the study area. The geophysical and hydrochemical logging data were analysed by using principal components analysis (PCA). Three main variables from PCA explained 86.4% of total variance of geophysical log data. The PCA results showed that PCl is closely related to groundwater properties and PC2 and PC3 are influenced by rock and fracture properties. Hydrochemical analysis indicated the presence of highly fractrued zone at the depth of 60m.

  • PDF

Investigation of Seasonal Characteristics of Contaminants and Hydrochemical Factors in an Aquifer for Application of In Situ Reactive Zone Technology (원위치 반응존 공법 적용을 위한 대수층내 오염물질 및 환경영향인자의 계절 특성 평가)

  • Ahn, Jun-Young;Kim, Cheolyong;Kim, Tae Yoo;Jun, Seong-Chun;Hwang, Inseong
    • Journal of Soil and Groundwater Environment
    • /
    • v.21 no.6
    • /
    • pp.192-203
    • /
    • 2016
  • A field investigation was conducted on an aquifer contaminated with trichloroethylene (TCE) for application of in situ reactive zone treatment using nanosized zero-valent iron (NZVI). The aquifer was an unconfined aquifer with a mean hydraulic conductivity of $5.14{\times}10^{-4}cm/sec$, which would be favorable for NZVI injection. Seasonal monitoring of TCE concentration revealed a presence of non-aqueous phase liquid form of TCE near IW (injection well). The hydrochemical data characterized the site groundwater to be a $Ca-HCO_3$ type. The average value of Langelier Saturation Index of the groundwater was -1.33, which implied that the site was favorable for corrosion of NZVI. Dissolved oxygen (DO) concentration varied between 2.5~11.5 mg/L, which indicated that DO would greatly compete with TCE as an electron acceptor. The hydrogeological and hydrochemical characterization reveals that the time around November would be appropriate for NZVI injection when water level and temperature are relatively high and DO concentration is low.

Hydrogeochemistry of groundwaters in Boeun Area, Korea

  • Park, Seong-Sook;Yun, Seong-Taek;Kim, Kyoung-Ho;Kweon, Jang-Soon;Sung, Ig-Hwan;Lee, Byeong-Dae
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.09a
    • /
    • pp.519-519
    • /
    • 2003
  • We performed a hydrochemical study on a total of 89 bedrock groundwaters collected from preexisting wells (30 to 300 m deep) in the Boeun area. Hydrochemical data showed significant variations in the area, due to varying degrees of anthropogenic pollution. The waters were mostly enriched in Ca and HCO$_3$ but locally contained significant concentrations of anthropogenic constituents in the general order of Cl >NO$_3$>SO$_4$. In particular, about 11% of the examined wells exceeded the drinking water standard with respect to nitrate. We consider that aquifers in the area are locally highly susceptible to the contamination related to agricultural activities. Diagrams showing the relationships between the summation of cations (∑cations) and the concentration of several anions with different origin (natural versus anthropogenic) were used to estimate the relative role of anthropogenic contamination. A good correlation was observed for the relationship between ∑cations and bicarbonate, indicating that water-rock interaction (namely, hydrolysis of silicate minerals) is most important to control the water quality. Thus, we made an assumption that the equivalent of dissolved cations for a water should be equal to the alkalinity, if the chemistry were controlled solely by a set of natural weathering reactions. If we excluded the equivalent quantities of cations and bicarbonate (natural origin) from the acquired data for each sample, the remainder therefore could be considered to reflect the degree of anthropogenic contamination. Finally, we performed a multiple regression approach for hydrochemical data using the ∑cations as a dependent variable and the concentration data of each anion (natural or anthropogenic) as an independent variable. Using this approach, we could estimate the relative roles of anthropogenic and natural processes. Rather than the conventional evaluation scheme based on water quality criteria, this approach will be more useful and reasonable for the evaluation of groundwater quality in a specific region and also can be used for planning appropriate protection and remedial actions.

  • PDF

Abundance and Diversity of Microbial Communities in the Coastal Aquifers in Songji Lagoon, South Korea (송지호 해안 대수층 미생물 군집의 풍부도 및 다양성)

  • Jung-Yun Lee;Dong-Hun Kim;Woo-Hyun Jeon;Hee Sun Moon
    • Journal of Soil and Groundwater Environment
    • /
    • v.28 no.5
    • /
    • pp.12-24
    • /
    • 2023
  • The Songji lagoon is brackish environment with a mixture of saline and fresh water, and the interaction of groundwater-lagoon water creates a physicochemical gradient. Although some studies have been conducted on the hydrological and geochemical characteristics of the Songji lagoon, microbial ecological studies have not yet been conducted. In this study, we investigated the effect of groundwater and surface water interaction on water quality as well as microbial community changes in the Songji Lagoon using 16S rRNA gene sequencing. Hydrochemical analyses show that samples were classified as 5 hydrochemical facies (HF) and hydrochemical facies evolution (HFE) revealed the intrusion phase was more dominant (57.9%) than the freshening phase (42.1%). Higher microbial diversity was found in freshwater in comparison to saline water samples. The microbial community at the phylum level shows the most dominance of Proteobacteria with an average of 37.3%, followed by Bacteroidota, Actinobacteria, and Patescibacteria. Heat map analyses of the top 18 genera showed that samples were clustered into 5 groups based on type, and Pseudoalteromonas could be used potential indicator for seawater intrusion.

Hydrogeochemistry of shallow groundwaters in western coastal area of Korea : A study on seawater mixing in coastal aquifers (서해 연안지역 천부지하수의 수리지구화학 : 연안 대수층의 해수 혼입에 관한 연구)

  • 박세창;윤성택;채기탁;이상규
    • Journal of Soil and Groundwater Environment
    • /
    • v.7 no.1
    • /
    • pp.63-77
    • /
    • 2002
  • Salinization is an important environmental problem encountered in coastal aquifers. In order to evaluate the salinization problem in the western coastal area of Korea, we have performed a regional hydrochemical study on shallow well groundwaters (N=229) collected within 10 km away from the coastline. The concentrations of analyzed solutes are very wide in range, suggesting that the hydrochemistry is controlled by several processes such as water-rock interaction, seawater mixing, and anthropogenic contamination. Based on the graphical interpretation of cumulative frequency curves for some hydrochemical parameters (esp., $Cl^{-}$ and ${NO_3}^-$), the collected water samples were grouped into two major populations (1) a background population whose chemistry is predominantly affected by water-rock interaction, and (2) an anomalous population which records the potential influences by either seawater mixing or anthropogenic pollution. The threshold values obtained are 34.7 mg/l for $Cl^{-}$ and 37.2 mg/l for ${NO_3}^-$, Using these two constituents, groundwaters were further grouped into four water types as follows (the numbers in parenthesis indicate the percentage of each type water) : (1) type 1 waters (38%) that are relatively poor in $Cl^{-}$ and ${NO_3}^-$, which may represent their relatively little contamination due to seawater mixing and anthropogenic pollution; (2) type 2 waters (21%) which are enriched in $Cl^{-}$, Indicating the considerable influence by seawater mixing; (3) ${NO_3}^-$-rich, type 3 waters (11%) which record significant anthropogenic pollution; and (4) type 4 waters (30%) enriched in both $Cl^{-}$ and ${NO_3}^-$, reflecting the effects of both seawater mixing and anthropogenic contamination. The results of the water type classification correspond well with the grouping on a Piper's diagram. On a Br x $10^4$versus Cl molar ratio diagram, most of type 2 waters are also plotted along or near the seawater mixing line. The discriminant analysis of hydrochemical data also shows that the classification of waters into four types are so realistic to adequately reflect the major process(es) proposed for the hydrochemical evolution of each water type. As a tool for evaluating the degree of seawater mixing, we propose a parameter called 'Seawater Mixing Index (S.M.I.)’ which is based on the concentrations of Na, Mg, Cl, and $SO_4$. All the type 1 and 3 waters have the S.M.I. values smaller than one, while type 2 and type 4 waters mostly have the values greater than 1. In the western coastal area of Korea, more than 21% of shallow groundwaters appear to be more or less affected by salinization process.

Hydrochemical and Microbial Community Characteristics of Spring, Surface Water and Groundwater at Samtong in Cheorwon, South Korea (강원도 철원 샘통과 주변 지표수 및 지하수의 수리화학 및 미생물 군집 특성 연구)

  • Han-Sun Ryu;Jinah Moon;Heejung Kim
    • The Journal of Engineering Geology
    • /
    • v.33 no.2
    • /
    • pp.257-273
    • /
    • 2023
  • Hydrochemical characteristics and microbial communities of spring (Samtong), surface water, and groundwater in Cheorwon, Korea, were analyzed. Field surveys and water quality analyses were undertaken at 10 sampling points for five spring, two surface, and three groundwater samples on 15 December 2022. Hydrochemical analysis revealed that most water samples were Ca-HCO3 type and that water-rock interactions were the predominant mineral source. Radon concentrations were <1 kBq m-3 for surface water, 1~10 kBq m-3 for spring water, and 1~1,000 kq m-3 for groundwater. Microbial cluster analysis showed that the main phyla were Proteobacteria, Planctomyceta, Verrucomicrobia, Acidobacteria, and Actinomycetota.Non-metric multidimensional scaling (NMDS) analysis indicated that water temperature, pH, and Si content were closely related to microorganism content. NMDS and canonical correspondence analysis results revealed that environmental factors affecting spring water were temperature, and Mg and Si concentrations, particularly for Acidobacteria and Proteobacteria, and Pseudomonas brenneri. Both hydrochemical and microbial community analyses yielded similar results at some spring and groundwater sampling points, likely due to the effects of a basalt aquifer.