• Title/Summary/Keyword: hydrocarbon gas

Search Result 488, Processing Time 0.027 seconds

Unresolving Pneumonia (치료에 대한 반응이 없는 폐렴)

  • Bang, Do Seok;Jung, In Sung;Kang, Ki Man;Park, Bum Chul;Yoon, Young Gul;Kim, Jae Su;Park, Yol;Lee, Sung Hoon;Hong, Young Chul;Ko, Kyoung Tae;Park, Sang Min;Na, Dong Jib
    • Tuberculosis and Respiratory Diseases
    • /
    • v.57 no.6
    • /
    • pp.604-608
    • /
    • 2004
  • A 47-year-old-man was admitted to the emergency department with dyspnea, right pleuritic pain, and high fevers for 3 days. He had a nonproductive cough that exacerbated the chest pain. A clinical examination revealed distressed and slightly tachypneic patient, with blood pressure of 110/90 mmHg, temperature of $39^{\circ}C$, pulse of 90 beats/min, respiratory rate of 24 breaths/min. A chest examination showed significantly diminished breath sounds in the right lung with dullness to percussion. Laboratory investigation demonstrated leukocytosis and a raised C-reactive protein. The results of arterial blood gas analysis revealed moderate hypoxemia. A radiograph and a CT scan of the chest showed extensive consolidation with multifocal low densities, and pleural effusion in the right lung. A diagnostic thoracentesis revealed straw-colored fluid, which was found to be a neutrophil-predominant exudate. At 7 days after admission, the clinical symptoms had not improved and the temperature was still $39^{\circ}C$ despite the aggressive therapy of community-acquired pneumonia. After comprehensive history taking, we realized then that he accidentally aspirated kerosene while siphoning from fuel tank to put into the boiler 3 days ago. Bronchoscopy with bronchial washings could be successful in establishing the diagnosis of hydrocarbon pneumonitis by demonstration of a high lipid-laden macrophage index. Thereafter, the symptoms and radiographic opacities gradually improved, and he was discharged several days later.

Computational Simulation of Hydrocarbon Adsorption in a Packed Column (탄화수소 흡착 컬럼의 전산모사 특성)

  • Yoo, Kyung-Seun;Lee, Su-Jung;Kim, Ji-Eun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.3
    • /
    • pp.10-16
    • /
    • 2020
  • Computational simulations of adsorption columns were carried out to investigate the removal characteristics of VOCs from a laundry shop. n-Decane was selected as the representative component among the VOCs emitted, and the activity of the adsorbents, such as activated carbon, was evaluated using commercial CFD code. The mathematical framework was composed of continuity and Navier-stokes equations, and the simulation was performed using the Matlab program. The adsorption isotherms of LDF, Freundlich, and Langmuir were evaluated, and the adsorption amount of the adsorption isotherms with the adsorption parameter was compared. The simulation was carried out using a particle porosity, dispersion coefficient, particle density, bed diameter, and bed length of 0.79, 42.4 ㎠/min, 485 g/L, 2.0 cm, and 2.5 cm, respectively. The effect of the gas velocity, dispersion coefficient, and voidage on the adsorption amount was compared in the Langmuir adsorption isotherm. The simulation was carried out in the velocity range of 50 to 200 cm/min, dispersion coefficient range of 100 to 400 ㎠/min, and particle porosity range of 0.66 to 0.79. The simulation results of activated carbon with benzene coincided with the Langmuir isotherm. Three types of adsorption isotherm were compared under similar conditions, and the simulation results showed the efficient adsorption condition for hydrocarbons.

Mineral Temperatures of the Sedimentary Basins for Petroleum Resources Exploration, Korea (국내 석유자원탐사 퇴적분자의 광물온도)

  • Son, Byeong-Kook
    • Journal of the Mineralogical Society of Korea
    • /
    • v.24 no.3
    • /
    • pp.165-178
    • /
    • 2011
  • The potential of petroleum generation was investigated by clay mineralogical changes of illite-smectite on the sedimentary basins: Tertiary Pohang basin and Cretaceouls Gyeongsang basin on land, and offshore basins east and west of Korea. Only disordered illite-smectite mixed layer minerals occur in the Pohang sediment, where petroleum generation cannot be expected due to low temperatures below $100^{\circ}C$. By contrast, the Gyeongsang basin is characterized by the occurrence of illite and high temperatures above $200^{\circ}C$ which are obtained by illite crystallinity. The high temperatures indicate that the Gyeongsang sediment ha, already passed through the oil generation stage. The change of disordered illite-smectite to R-l ordered illite-smectite is shown in the sediment of the East Sea continental shelf area at a depth of 2,500 m. Therefore, the oil generation can be expected in the sediments below the depth of 2,500 m. The sequential change of disordered illite-smectie to R=3 ordered illite-smectite through R=l ordered illite-smectite occurs in the sediments of West Sea continental shelf area with burial depth which shows the favorable condition for oil and gas generation. The temperatures of sediments measured by illite-smectite indicate that hydrocarbon potential is very low in the onland basins but high in the continental shelf areas.

Relationship between $CO_2$ emission and fuel consumption rate according to used fuels at driving mode (주행모드에서 사용연료에 따른 자동차의 $CO_2$ 배출특성과 연료소비율의 상관관계 비교 분석)

  • Kim, Yong-Tae;Lee, Ho-Kil;Kang, Jeong-Ho;Han, Sung-Bin;Chung, Yon-Jong
    • Journal of Energy Engineering
    • /
    • v.17 no.4
    • /
    • pp.227-232
    • /
    • 2008
  • Carbon dioxide is considered a major greenhouse gas that contributes to global wanning. $CO_2$ is a major component of the exhaust in the combustion of any hydrocarbon fuel. The regulation for $CO_2$ emission from vehicles has become much more stringent in recent years. These more stringent regulations require vehicle manufacturers to develop alternative fuels that reduce exhaust emissions. This paper evaluated the correlation of $CO_2$ emission and fuel economy in the Gasoline, Diesel, and LPG vehicles according to FTP-75 and NEDC(ECE15+EUDC) driving mode. From this study, we discovered that the decrease rate of $CO_2$ emission is higher for fuels of lower carbon concentration. When the relationship between $CO_2$ emission and fuel consumption rate according to used fuels is expressed as a function, one can find out that they have a high correlation. LPG vehicles produce less $CO_2$ emission than gasoline and diesel vehicles.

Production of Single-Cell Protein on Petroleum Hydrocarbon -V. Recovery and Purification of the Yeast Cell and Its Preliminary Animal Feeding Test- (석유탄화수소를 이용한 단세포단백질의 생산에 관한 연구 -V. 균체의 회수, 정제 및 예비 동물사육 시험-)

  • Pyun, Yoo-Ryang;Kwon, Tai-Wan;Chee, Kew-Mahn;Kim, Chun-Su
    • Korean Journal of Food Science and Technology
    • /
    • v.4 no.4
    • /
    • pp.252-258
    • /
    • 1972
  • Methods of separating yeast cells from oil-water-cell emulsion and subsequent purification of the recovered yeast have been studied. In addition, the results of preliminary feeding experiments in which a yeast grown on gas oil was incorporated into chick rations are reported. According to the present study, it appears that the recovery of the yeasts would be easier at pH 9, since the emulsion is relatively more unstable. A class of surface active agent at a concentration of 0.3% was found to facilitate the separation of the yeast from the emulsion. The use of electrolytes such as NaCl and KCl were found to be most effective in breaking the emulsion. Solvent treatment using iso-propyl alcohol and its azeotropic mixture with hexane at $58^{\circ}C$ are particularly suitable for purification of the yeast. In the feeding experiment it was found that 5 percent of the fishmeal in the control ration could be replaced by the yeast with no adverse effect on performance. However, when 8 percent of the fish meal in the control ration was replaced by the yeast, some effect on live-weight gain of the chicks was observed.

  • PDF

A Numerical Modeling of the Temperature Dependence on Electrochemical Properties for Solid Oxide Electrolysis Cell(SOEC) (고체 산화물 수전해 시스템(SOEC)에서 전기화학적 특성의 온도 의존성에 대한 수치 모델링)

  • Han, Kyoung Ho;Jung, Jung Yul;Yoon, Do Young
    • Journal of Energy Engineering
    • /
    • v.29 no.2
    • /
    • pp.1-9
    • /
    • 2020
  • In recent days, fuel cell has received attention from the world as an alternative power source to hydrocarbon used in automobile engines. With the industrial advances of fuel cell, There have been a lot of researches actively conducted to find a way of generating hydrogen. Among many hydrogen production methods, Solid Oxide Electrolysis Cell(SOEC) is not only a basic way but also environment-friendly method to produce hydrogen gas. Solid Oxide Electrolysis Cell has lower electrical energy demands and high thermal efficiency since it is possible to operate under high temperature and high pressure conditions. For these reasons, experimental researches as well as studies on numerical modeling for Solid Oxide Electrolysis Cell have been under way. However, studies on numerical modeling are relatively less enough than experimental accomplishments and have limited performance prediction, which mostly is considered as a result from inadequate effects of electrochemical properties by temperature and pressure. In this study, various experimental studies of commercial Membrane Electrode Assembly (MEA) composed of Ni-YSZ (40wt%, Ni-60 wt% YSZ)/8-YSZ (TOSOH, TZ8Y)/LSM (La0.9Sr0.1MnO3) was utilized for improving effectiveness of SOEC model. After numerically analyzing effects of electrochemical properties according to operating temperature, causing the largest deviation between experiments and simulation are that Charge Transfer Coefficient (CTC), exchange current density, diffusion coefficient, electrical conductivity in SOEC. Analyzing temperature effect on parameter used in overpotential model is conducted for modeling of SOEC. cross-validation method is adopted for application of various MEA and evaluating feasibility of model. As a result, the study confirm that the numerical model of SOEC based on structured process of effectiveness evaluation makes performance prediction better.

Removal of Off-flavor from Laminaria Japonica by Treatment Process of Supercritical Carbon Dioxide (초임계 이산화탄소 처리 공정에 의한 다시마 유래 이취성분 제거)

  • Park, Jung-Nam;Kim, Ryoung-Hee;Woo, Hee-Chul;Chun, Byung-Soo
    • Clean Technology
    • /
    • v.18 no.2
    • /
    • pp.191-199
    • /
    • 2012
  • In order to reduce or remove off-flavor and volatile organic compounds (VOCs) from Laminaria japonica effectively, continuous treatment process by supercritical carbon dioxide (SC-$CO_2$) was applied. After freeze-drying, Laminaria japonica powdered with $710{\mu}m$ was used. Experiments were carried out at temperature range from 35 to $55^{\circ}C$, and pressure range from 10 to 25 MPa for evaluation of SC-$CO_2$ treatment effect. Flow rate of carbon dioxide used in this reseach was constantly fixed at 26.81 g/min. Before and after treatment of SC-$CO_2$, off-flavor and VOCs from Laminaria japonica were analyzed by gas chromatography-mass spectrometry detector (GC-MSD). Total 47 VOCs emitted from Laminaria japonica were identified before treatment of SC-$CO_2$, major components of seaweed smell (ordor) in Laminaria japonica were identified as alcohols, aldehydes, ester and acids, ketone, halogenated compounds and hydrocarbon. Off-flavor and VOCs in all experimental conditions was reduced or removed after SC-$CO_2$ treatment. Among the experimental conditions, the highest removal yield was at 25 MPa and $55^{\circ}C$.

The Characteristics of Groundwater and a Field Test for Thermal Insulation of Landfarming of Petroleum Contaminated Soil in Winter Season (유류오염지역의 지하수 수질특성 및 동절기 토양경작법의 온도보전을 위한 현장사례 연구)

  • Cho, Chang-Hwan;Kim, Soon-Heum;An, Jong-Ik;Lee, Yoon-Oh;Choi, Sang-Il
    • Journal of Soil and Groundwater Environment
    • /
    • v.18 no.5
    • /
    • pp.7-14
    • /
    • 2013
  • The objectives of this study were to identify the characteristics of groundwater in the petroleum contaminated site and to evaluate the applicability of house-type landfarm facilities heated with briquette stoves in winter season. The six monitoring wells were installed at the site where pH, dissolved oxygen, and temperature were all measured. Also groundwater contaminants, benzene, toluene, ethylbenzene, xylene and total petroleum hydrocarbon, were analyzed twice. House-type two landfarm facilities ($12m{\times}40m{\times}4.8m$) each installed with four briquette stoves were constructed. During four rounds treatment process, VOCs, moisture, temperature were monitored and soil contaminants were analyzed. The pH was 6.37 and considered subacid and DO was measured to be 3.12 mg/L. The temperature of groundwater was measured to be $9.48^{\circ}C$. The groundwater contaminants were detected only in the monitoring wells within the contaminated area or close to it showing that the groundwater contaminated area was similar to the soil contaminated area. During the landfarm process, 73.3% of VOCs concentration in interior gas was decreased and moisture was lowered from 17.7% to 13.4%. In the morning, at 8:00 am, the temperature was decreased showing soil ($5.5^{\circ}C$) > interior ($4.8^{\circ}C$) > exterior ($3.5^{\circ}C$). In the afternoon, at 2:00 pm, the temperature was soil ($8.6^{\circ}C$) < interior ($9.9^{\circ}C$) < exterior ($11.5^{\circ}C$) with solar radiation. The temperature difference between interior and exterior was $0.7^{\circ}C$ in the morning, but it was $1.6^{\circ}C$ in the afternoon. A total of 130 days were taken for four round landfarm processes. Each process was completed within 33 days showing 80% of cleanup efficiency ($1^{st}$ order dissipation rate(k) = 0.1771).

Numerical Study of Methane-hydrogen Flameless Combustion with Variation of Recirculation Rate and Hydrogen Content using 1D Opposed-flow Diffusion Flame Model of Chemkin (Chemkin 기반의 1차원 대향류 확산 화염 모델을 활용한 재순환율 및 수소 함량에 따른 메탄-수소 무화염 연소 특성 해석 연구)

  • Yu, Jiho;Park, Jinje;Lee, Yongwoon;Hong, Jongsup;Lee, Youngjae
    • Clean Technology
    • /
    • v.28 no.3
    • /
    • pp.238-248
    • /
    • 2022
  • The world is striving to transition to a carbon-neutral society. It is expected that using hydrogen instead of hydrocarbon fuel will contribute to this carbon neutrality. However, there is a need for combustion technology that controls the increased NOx emissions caused by hydrogen co-firing. Flameless combustion is one of the alternative technologies that resolves this problem. In this study, a numerical analysis was performed using the 1D opposed-flow diffusion flame model of Chemkin to analyze the characteristics of flameless combustion and the chemical reaction of methane-hydrogen fuel according to its hydrogen content and flue gas recirculation rate. In methane combustion, as the recirculation rate (Kv) increased, the temperature and heat release rate decreased due to an increase in inert gases. Also, increasing Kv from 2 to 3 achieved flameless combustion in which there was no endothermic region of heat release and the region of maximum heat release rate merged into one. In H2 100% at Kv 3, flameless combustion was achieved in terms of heat release, but it was difficult to determine whether flameless combustion was achieved in terms of flame structure. However, since the NOx formation of hydrogen flameless combustion was predicted to be similar to that of methane flameless combustion, complex considerations of flame structure, heat release, and NOx formation are needed to define hydrogen flameless combustion.

Analysis of Mineral and Volatile Flavor Compounds in Pimpinella brachycarpa N. by ICP-AES and SDE, HS-SPME-GC/MS (ICP-AES와 SDE, HS-SPME-GC/MS를 이용한 참나물의 무기성분과 향기성분)

  • Chang, Kyung-Mi;Chung, Mi-Sook;Kim, Mi-Kyung;Kim, Gun-Hee
    • Journal of the Korean Society of Food Culture
    • /
    • v.22 no.2
    • /
    • pp.246-253
    • /
    • 2007
  • Mineral and volatile flavor compounds of Pimpinella brochycarpa N., a perennial Korean medicinal plant of the Umbelliferae family, were analyzed by inductively coupled plasma-atomic emission spectroscopy (ICP-AES) and simultaneous steam distillation extract (SDE)-gas chromatography mass spectrometry (GC/MS), head space solid phase micro-extraction (HS-SPME)-GC/MS. Mineral contents of the stalks and leaves were compared and the flavor patterns of the fresh and the shady air-dried samples were obtained by the electronic nose (EN) with 6 metal oxide sensors. Principal component analysis (PCA) was carried out using the data obtained from EN. The 1st principal values of the fresh samples have + values and the shady air-dried have - values. The essential oil extracted from the fresh and the shady air-dried by SDE method contain 58 and 31 flavor compounds. When HS-SPME method with CAR/PDMS fiber and PDMS fiber were used, 34 and 21 flavor compounds. The principal volatile components of Pimpinella brachycarpa N. were ${\alpha}$-selinene, germacrene D, and myrcene.