• Title/Summary/Keyword: hydrocarbon(s)

Search Result 437, Processing Time 0.033 seconds

Survey on the Core Technologies of Hydrocarbon-fueled PWR X-1 Scramjet Engine for X-51 (X-51의 PWR X-1 탄화수소 연료 스크램제트 엔진 핵심 기술 고찰)

  • Noh, Jin-Hyeon;Won, Su-Hee;Choi, Jeong-Yeol
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.303-306
    • /
    • 2008
  • After the successful flight test of X-43A, U.S. Airforce is developing missile-type X-51A SED (Scramjet Engine Demonstrator-Wave Rider). X-51A using PWR (Pratt and Whitney Rocketdyne) X-1 hydrocarbon fueled scramjet engine will have a ground test in 2008 and flight test in 2009. Technologies established though the X-51A program will be transferred to DARPA's Falcon program developing HTV (Hypersonic Test Vehicle)-3X and HCV (Hypersonic Cruise Vehicle). Present paper is an overview of propulsion core technologies of X-51 such as regenerative cooling of engine structures and combustion using liquid/supercritical JP-7 fuel.

  • PDF

A Study on the Filmic Properties of Polypropylenen by Modification of Hydrogenated Hydrocarbon Resin (수첨석유수지 개질에 의한 폴리프로필렌 필름의 특성 연구)

  • Chun, Bonggeun;Sung, Ickkyeung;Lee, Jungjoon
    • Journal of Adhesion and Interface
    • /
    • v.14 no.4
    • /
    • pp.192-196
    • /
    • 2013
  • In this study, a series of bi-axially oriented films based on homo polypropylene (PP) and hydrocarbon resin (HCR) modified PP were prepared to investigate their mechanical properties, optical properties, permeability to gases and water vapors and shrinkage ratio. Hydrogenated dicyclopentadiene (DCPD) resin and hydrogenated C9 resin were used as HCR in this study. Bi-axially oriented polypropylene (BOPP) films made with PP/HCR blends showed better mechanical properties (higher Young's modulus), better optical properties (lower haze), lower permeability to gases and water vapors and increased shrinkage ratio than BOPP films made with homo-PP. Hydrogenated DCPD resin and hydrogenated C9 resin showed similar contribution to the improvement in mechanical properties and optical properties of BOPP films, but there are a differences in permeability to gases and water vapors and shrinkage ratio.

The Region of Distribution of Barbiturates in Synaptosomal Plasma Membrane Vesicles Isolated from Rat Brain as Studied by Fluorescence Quenching (Barbiturates가 생체세포막 외측 단층의 소수성 부위와 친수성 부위에 분포되는 상대적 비율)

  • Yun, Il;Lee, Byung-Woo
    • The Korean Journal of Pharmacology
    • /
    • v.31 no.3
    • /
    • pp.271-278
    • /
    • 1995
  • The relative distribution ratio of barbiturates between hyarocarbon interior and surface region of outer monolayer of synaptosomal plasma membrane vesicles (RSPMV) isolated from rat whole brain was determined by employing the fluorescent probe technique. The two fluorescent probes N- octadecylnaphthyl-2-amine-6-sulfonic acid (ONS) and 12-(9-anthroyloxy) stearic acid (AS) were utilized as probes for hydrocarbon interior and surface of outer monolayer of RSPMV. respectively. The Stern-Volmer equation for fluorescent quenching was modified to calculate the relative distribution ratio. The analysis of preferential quenching of these probes by barbiturates indicates that pentobarbital, hexobarbital, amobarbital and phenobarbital are predominantly distributed on the surface region. whereas thiopental sodium has an accessibility to the hydrocarbon interior of the outer monolayer of the RSPMV. From these results, it is strongly suggested that the more effective penetration into the hydrocarbon interior of the outer monolayer of the membrane lipid bilayer could result in higher general anesthetic activity.

  • PDF

Exhaust Emissions Reduction using Unburned Exhaust Gas Ignition Technology and Hydrocarbon Adsorber (미연 배기가스 점화 기술과 탄화수소 흡착기를 이용한 배기저감)

  • Kim, C.S.;Chun, J.Y.;Choi, J.W.;Kim, D.S.;Lee, Y.S.;Kim, I.T.;Ohm, I.Y.;Cho, Y.S.
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.150-155
    • /
    • 2000
  • Exhaust emissions from vehicles are the main source of air pollution. Many researchers are trying to find the way of reducing vehicle emissions, especially in the cold transient period of the FTP-75 test. In this study, UEGI (Unburned Exhaust Gas Ignition) technology, warming up the close-coupled catalytic converter (CCC) by igniting the unburned exhaust mixture using two glow plugs installed in the upstream of the catalyst, was developed. It was applied to an exhaust system with a hydrocarbon adsorber to ensure an effective reduction of HC emission during the cold start period. Results showed that the CCC reaches the light-off temperature (LOT) in a shorter time compared with the baseline exhaust system, and HC and CO emissions are reduced significantly during the cold start.

  • PDF

HCA AND TWC HYBRID SYSTEM FOR REDUCING COLD-START EMISSION

  • Lee, S.C.;Jang, J.H.;Lee, B.Y.;Bae, J.H.;Choung, S.J.
    • International Journal of Automotive Technology
    • /
    • v.5 no.1
    • /
    • pp.1-7
    • /
    • 2004
  • In line with the Super Ultra Low Emission Vehicle (SULEV) regulation, the main idea in this study has been focused on the utilization of hydrocarbon adsorber (HCA) to adsorb the excess hydrocarbons emitted during a period of engine cold-start, As main recipes of HCA materials, many types of zeolite as well as the combination of alumina and precious metals were used, Representative physico-chemical factors of zeolite such as acidic and hydrophobic properties were characterized. The optimum recipe of HCA materials was also determined. Among the acid properties of zeolites, the Si/Al ratio was found to be the most important factor to get higher hydrocarbon adsorption capacity.

Kinetic Study on the Mixing Region of a Hydrocarbon Reformer (개질기 혼합영역에서 탄화수소 연료의 반응 특성에 대한 연구)

  • Kim, Sun-Young;Bae, Joong-Myeon
    • Journal of Hydrogen and New Energy
    • /
    • v.22 no.3
    • /
    • pp.357-362
    • /
    • 2011
  • Complete mixture preparation of reactants prior to catalytic reforming is an enormously important step for successful operation of a fuel reformer. Incomplete mixing between fuel and reforming agents such as air and steam can cause temperature overshoot and deposit formation which can lead the failure of operation. For that purpose it is required to apply computational models describing coupled kinetics and transport phenomena in the mixing region, which are computationally expensive. Therefore, it is advantageous to analyze the gas-phase reaction kinetics prior to application of the coupled model. This study suggests one of the important design constraints, the required residence time in the mixing chamber to avoid substantial gas-phase reactions which can lead serious deposit formation on the downstream catalyst. The reactivity of various gaseous and liquid fuels were compared, then liquid fuels are far more reactive than gaseous fuels. n-Octane was used as a surrogate among the various hydrocarbons, which is one of the traditional liquid fuel surrogates. The conversion was slighted effected by reactants composition described by O/C and S/C. Finally, threshold residence times in the mixing region of a hydrocarbon reformer were studied and the mixing chamber is required to be designed to make complete mixture of reactants by tens of milliseconds at the temperature lower than $400^{\circ}C$.

The Variation of Offset Ink Properties according to the Vegetable Oil Estersr (Vegetable Oil Esters에 따른 Offset 잉크의 물성 변화에 관한 연구)

  • Park, Jung-Min;Kim, Sung-Bin
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.30 no.1
    • /
    • pp.1-19
    • /
    • 2012
  • According as gradually increasing the demand for eco-friendly at the printing process, it has been progressed fairly development. Especially, the inks are used by soy oil beginning of ink industry for preventing environment, it is possible to make eco-friendly inks with vegetable ester. So it is not necessary to use petroleum-based solvents at all for preventing environment. These eco-friendly inks have a benefits they are able to use the renewable resource. But basically vegetable oils have that reduce the VOC(Volatile Organic Compound) and high viscosity, high solubility properties. So if the vegetable oils use in the ink, set off problem occur on the paper because of slow drying time. In case of vegetable ester, it has similar the molecular weight and kinetic viscosity with hydrocarbon solvent, it is able to control the power of dilution about the resin. So, it has benefit that solve the problem of the existing eco-friendly inks. In this study, different types of ester were made by six types of vegetable oils and used ester in the varnishes and inks properties are comparison with hydrocarbon solvent based ink. By considering the intrinsic properties of vegetable oil, ester used to analyze the changes in ink properties, using ester varnish is applied to study the rheology characteristics and emulsification with inks.

The Study of Application of Bio-Surfactant Producing Bacteria for Growing Crop in Oil Spilled Soil (기름으로 오염된 토양에서 작물생육을 위한 계면활성제 생산 Bacteria의 활용에 관한 연구)

  • Hwang, Cher-Won;Chang, Hae-Won;Choe, Yong-Rak
    • Journal of Life Science
    • /
    • v.17 no.7 s.87
    • /
    • pp.944-947
    • /
    • 2007
  • Bacillus sp.LPO3 (producing emulsifying substances such as bio-surfactant) was used as a bio-control agent to degrade hydrocarbon (gasoline in oil spilled crop soil). The soil (brought from fertilizer store)was mixed with gasoline-spilled soil (made with Diatomaceous Earth, Sigma.U.S.A). The study was conducted for a period of 13 days, 13 days during which bacterial growth, hydrocarbon degradation and growth parameters of Bacillus sp.LP03 including shoot and root length were studied. We found that the effective of bacterial producing substance might bio-surfactants let the plants survive even more promote the growth of shoot and root length and showed antifungal activity against gray mold. Without the bacteria, they couldn't grow in oil-spilled soil not even survive. According to the results of the above experiments, we can see with following results, hydrocarbon in gasoline was reduced, day by day, then RNA dot blotting was done and it fit the results we had done. Finally, this Bacteria(producing bio-surfactant) were found to have effective bio-control agent for cropping in oil spilled soil and infected by gray mold.