• Title/Summary/Keyword: hydrocarbon(s)

Search Result 436, Processing Time 0.025 seconds

The Effect of Base Oil Composition on Electronic Insulating Oil's Performances (윤활기유의 조성이 전기절연유의 성능 및 특성에 미치는 영향)

  • 문우식;전정식
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.181-189
    • /
    • 1998
  • In order to investigate the effect of base oil composition on the electronic insulating oil's performances, an experimental study has been conducted using different oils. Owing to their properties, like lower pour point and gas absorbing, naphthenic base oils are used more often than paraffmic base oils for the electronic insulating oil application. Naphthenic and paraffinic base oils are significantly different in their aromatic hydrocarbon content. In this paper, PXE(para xylyl ethane), LAB(linear alkylbenzene), C13 aromatic hydrocarbon mixture and C17 aromatic hydrocarbon mixture are investigated regarding their influence on insulating oil's performances. According to present study, breakdown voltage decreased with increasing aromatic lydrocarbon content in a deep dewaxed paraffmic base oil. However, any changing in the dissipation factor was not recognizable at small treated level. Furthermore, the volume resistance was not influenced by aromatic hydrocarbon content. The gassing tendency was found as a highly sensible property, changing with treating aromatic hydrocarbons. The higher benzene ring content in the hydrocarbon, the better gassing tendency.

  • PDF

Studies on the Hydrocarbon from Tobacco Leaves (잎담배 Hydrocarbon에 관한 연구)

  • Jang, Gi-Cheol;Kim, Yong-Ok;Lee, Un-Chul
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.12 no.2
    • /
    • pp.77-83
    • /
    • 1990
  • This study was conducted to develop the method of hydrocarbon analysis and investigate hydrocarbon contents in flue-cured and burley tobacco leaves harvested in Korea and U.S.A. Tobacco leaf was extract with hexane in soxhlet apparatus. Hydrocarbon was fractionated from hexane extract by silica gel column chromatography, and then separated and indentified by GC, GC/MS using SE-54 fused silica capillary column. The developed method was feasible to analyze neophytadiene, normal and branched hydrocarbons from Clo to Cn. The result of recovery test was decade 99%, eicosane 100%, triacontane 102%. The major hydrocarbon of tobacco leaves were neophytadiene, nC3l, iC31, nC33, aC33, aC32, aC30 and nC29. The amount of total hydrocarbon in burley and flue-cured tobacco leaves harvested in U.S.A. and Korea were 4591, 2931, 2929 and 3015$\mu\textrm{g}$/g, respectively.

  • PDF

Study on Individual Hydrocarbon's Composition of Gasoline Fraction of Tamsagbulag Oil, Mongolia

  • Adiya, Sainbayar;Vosmerikov, A.V.;Nordov, Erdene;Golovko, A.K.
    • Applied Chemistry for Engineering
    • /
    • v.16 no.1
    • /
    • pp.21-27
    • /
    • 2005
  • In order to conduct research on oil originated in Mongolia for further application of petroleum not only as fuel but also as raw material for organic synthesis, we need to study the physical, chemical characteristics and individual, group hydrocarbon's compositions of main petroleum fractions. A number of studies and surveys on the physical and chemical characteristics, group hydrocarbon's composition of petroleum deposits in Zuun-Bayan, Sukhaibulag, Tsagaan Elst, Tamsagbulag have been carried out earlier through n-g-M, aniline point and dispersimetric methods successfully. Yet a detailed chromatographical and NMR spectroscopic study for the individual hydrocarbon's composition of Tamsagbulag oil main fractions has not been conducted. In the present study the results of GC analyses of gasoline fractions of wells 19-3, 19-13 and 19-10, Tamsagbulag (Eastern Mongolia) were presence. The gasoline fractions of given wells were characterized by the high concentration of paraffins and presence of trace amount of olefins. There were identified 69 paraffins, 45 naphthenes, 41 aromatics and 3 olefins in total 158 individual hydrocarbons from each samples of gasoline fraction. The first attempts to classify Tamsagbulag oil under the individual hydrocarbon's composition data were successfully conducted and the supposition of a genetic classification of given oil as "sapropelic" type was made.

COMBUSTION CHARACTERISTICS OF ESTERIFIED RICE BRAN OIL AS AN ALTERNATIVE FUEL IN A DIESEL ENGINE

  • Choi, S.H.;Oh, Y.T.
    • International Journal of Automotive Technology
    • /
    • v.7 no.4
    • /
    • pp.399-406
    • /
    • 2006
  • The smoke emission of diesel engines is being recognized as one of the major source of the air pollution problems. This study investigates the potential of esterified rice bran oil to reduce smoke emission as an alternative fuel for diesel engines. Because the esterified rice bran oil has approximately a 10.5% oxygen content, the combustion of the diesel engine improved and exhaust smoke decreased. Gas chromatography was used to analyze not only the total amount of hydrocarbon but also the amount of hydrocarbon components from $C_1$ to $C_6$ in the exhaust gas to determine an exact source responsible for the remarkable reduction in the smoke emission. The number of individual hydrocarbon($C_1{\sim}C_6$) as well as the total amount of hydrocarbon of esterified rice bran oil reduced significantly compared to that of hydrocarbon of diesel fuel.

COMPARISON OF HYDROCARBON REDUCTION IN A Sl ENGINE BETWEEN CONTINUOUS AND SYNCHRONIZED SECONDARY AIR INJECTIONS

  • Chung, S.-H.;Sim, H.-S.
    • International Journal of Automotive Technology
    • /
    • v.3 no.1
    • /
    • pp.41-46
    • /
    • 2002
  • Effect of secondary air injection (SAI) on hydrocarbon reduction has been investigated in a single cylinder Sl engine operating at cold-steady/cold-start conditions. The hydrocarbon emission and exhaust gas temperature with and without catalytic converter were compared with continuous and synchronized SAIs, which injected secondary air intermittently into exhaust port. Effects of SAI location, SAI pressure, SAI timing, and location of catalytic converter have been investigated and the results are compared for both SAls with base condition. At cold-steady condition, the rate of HC reduction increased as the location of SAI was closer to the exhaust valve for both synchronized and continuous SAls. The emission of HC decreased with increasing exhaust-A/F when it was rich, and was relatively insensitive when it was lean. The timing of SAI in synchronized SAI had significant effect on HC reduction and exhaust gas temperature and the synchronized SAI was found to be more effective in HC reduction and exhaust gas temperature compared to the continuous SAI . At cold-start condition, when the catalytic converter was located 20 cm downstream from the exhaust port exit, the catalytic converter warm-up period for both SAls decreased by about 50%, and the accumulated hydrocarbon emission during the first 120 s decreased about by 56% and 22% with the synchronized and continuous SAIs, respectively, compared to that of the base condition.

Reducing Exhaust Hydrocarbon at Gasoline Engine with Catalytic Converter using Synchronized Secondary Air Injection (촉매가 장착된 가솔린엔진에서 동기화된 2차공기분사에 의한 배기 탄화수소 저감)

  • 심현성;민경덕;정석호
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.2
    • /
    • pp.67-74
    • /
    • 2001
  • A synchronized secondaty air injection method has been developed to hydrocarbon emission by injecting secondary air intermittently into exhaust port. The method has been tested in a single cylinder spark-ignition engine operating at cold-steady / cold-start conditions. Effects of air injection timing, intake pressure and engine air-fuel ratio have been investigated at cold-steady condition. Also, hydrocarbon emission and exhaust gas temperature with catalytic conberter are compared with a continuous SAI method and base condition at cold-start condition. Resules show that hydrocarbon reduction rate and exhaust gas temperature are sensitive to the timing of synchronized SAI. At cold-steady condition, HC emission is minimum at engine air-fuel ratio of 10. At cold-start condition, the accumulated hydrocarbon emission during the first 120 s decreases about 56% and 22% with the synchronized and continuous SAI, respectively, compared to that of base condition.

  • PDF

Microemulsifieation of Chlorinated Hydrocarbon/water with Mixed Surfactant Systems (혼합 계면활성제를 이용한 염소화 탄화수소l물의 마이크로에멀젼 연구)

  • 김천희
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.22 no.3
    • /
    • pp.265-265
    • /
    • 1998
  • The phase behavior of chlorinated hydrocarbon/mixed surfactants/water microemulsion systems were investigated for dry cleaning solvent properties. With appropriate surfactant mixtures, Winsor type I-III-II microemulsions were generated which is the same as hydrocarbon systems. For perchloroethylene(PCE) with mixed Tween systems, the optimum salinity(S*) decreases and the optimum solubilization parameter(o*) increases with decreas- ing HLB. For PCE with mixed Aerosol MA and ethoxylated alcohol systems, S* and o* both increase with increasing ethylene oxide moles. For dichlorobenzene(DCB) with mixed Aerosol MA and ethoxylated or propoxylated sulfate systems, S* and o* both increase with increasing ethylene oxide moles or propylene oxide moles.

Microemulsifieation of Chlorinated Hydrocarbon/water with Mixed Surfactant Systems (혼합 계면활성제를 이용한 염소화 탄화수소l물의 마이크로에멀젼 연구)

  • 김천희
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.22 no.3
    • /
    • pp.365-373
    • /
    • 1998
  • The phase behavior of chlorinated hydrocarbon/mixed surfactants/water microemulsion systems were investigated for dry cleaning solvent properties. With appropriate surfactant mixtures, Winsor type I-III-II microemulsions were generated which is the same as hydrocarbon systems. For perchloroethylene(PCE) with mixed Tween systems, the optimum salinity(S*) decreases and the optimum solubilization parameter(o*) increases with decreas- ing HLB. For PCE with mixed Aerosol MA and ethoxylated alcohol systems, S* and o* both increase with increasing ethylene oxide moles. For dichlorobenzene(DCB) with mixed Aerosol MA and ethoxylated or propoxylated sulfate systems, S* and o* both increase with increasing ethylene oxide moles or propylene oxide moles.

  • PDF

An Experimental Study on Application of Biodiesel Fuel in Direct Injection Diesel Engine (직접 분사식 디젤기관에서 바이오디젤유의 적용에 관한 실험적 연구)

  • Oh, Y.I.;Choi, S.H.
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.818-823
    • /
    • 2001
  • Because the exhaust emissions from automobiles are increased, our environment is faced with very serious problems related to the air pollution in these days. In particular, the exhaust emissions of diesel engine are recognized main cause which influenced environment strong. Lots of researcher have been attempted to develop various alternative fuel on purpose to reduce these harmful emissions. In this study, the potential possibility of esterfied rice bran oil which is a kind of biodiesel fuel was investigated as an alternative fuel for diesel engine. And, we tried to analysis not only total hydrocarbon but hydrocarbon components from $C_1$ to $C_6$ in exhaust gas using gas chromatography to seek the reason for remarkable reduction of exhaust emission. Individual hydrocarbon$(C_1\simC_6)$ as well as total hydrocarbon of biodiesel fuel is reduced remarkably than that of diesel fuel in this experiment.

  • PDF

A Study on Adhesion Performance of Styrene-Block-Copolymer Based Hot Melt Pressure Sensitive Adhesives with Dicyclopentadiene Based Hydrogenated Hydrocarbon Resins (수첨 DCPD계 석유수지를 이용한 SBCs계 핫멜트점착제의 접착성능 연구)

  • Shim, Jaeho;Kim, Yunho;Lee, Jungjoon
    • Journal of Adhesion and Interface
    • /
    • v.15 no.4
    • /
    • pp.145-150
    • /
    • 2014
  • Dicyclopentadiene (DCPD)-based hydrocarbon resins are widely used as tackifiers in many applications. In particular, hydrogenated DCPD-based hydrocarbon resins are widely used in premium hot-melt-type adhesives such as hot melt adhesives (HMAs) and/or hot melt pressure-sensitive adhesives (HMPSAs), because are water-white in color and possess excellent stability to light and heat. This article discusses the adhesive performance of various hydrogenated DCPD resins when they are used as tackifiers in styrene-block-copolymer (SBC)-based HMPSAs. This article shows the correlation between the characteristics of tackifiers and the adhesive performance of SBC-based HMPSAs. The higher the softening point of the tackifier, the higher is the $T_g$, softening point, and crossover temperature of the PSAs. High aromatic H wt% content reduces the high-temperature resistance of PSAs, as suggested by the decrease in the crossover temperature and softening point of the PSAs.