• Title/Summary/Keyword: hydroball

Search Result 13, Processing Time 0.026 seconds

Noncement-based Hydroball Evaluation of Permeable Block Strength Properties (무시멘트 기반 하이드로볼을 활용한 투수블록의 강도 특성)

  • Hwang, Woo-Jun;Lee, Chang-Woo;Lee, Sang-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.11a
    • /
    • pp.207-208
    • /
    • 2022
  • Since 1960, the green area has decreased due to rapid urbanization and the artificial surface has increased, and the repair and water function of the previous surface has decreased due to the decrease in rainwater absorption capacity. In addition, the risk of carbon dioxide and fine dust is emerging due to the use of fossil fuels due to urbanization. As a result, permeable blocks, an eco-friendly product, are in the spotlight. Therefore, this study was conducted to examine the strength properties of the permeable block using a hydroball. As a result of the experiment, the flexural strength and compressive strength tended to decrease as the hydroball replacement rate increased. It is judged that the hydroball absorbs a large amount of moisture during the mixing process and lacks moisture required for curing, resulting in a decrease in strength. According to KS F 4419, since the hydroball replacement rate is satisfied up to 20%, further research is needed to analyze the adsorption performance of air pollutants in the future and evaluate their utilization as a permeable block in the future.

  • PDF

Determination of Mineral Nutrient Concentrations in Fish Growing Water and Lettuce Leaf for Hydroball Aquaphonics (하이드로볼 배지경 아쿠아포닉스에서 사육수 및 상추 잎의 무기이온 농도 구명)

  • Lee, Hyunjin;Choi, Kiyoung;Choi, Eunyoung
    • Journal of Bio-Environment Control
    • /
    • v.29 no.3
    • /
    • pp.293-305
    • /
    • 2020
  • This experiment was aimed to identify concentrations of mineral nutrients in leaf lettuce (Lactuca sativa) grown on hydroball aquaponics and in the water for growing fish by conducting two experiments. The experiment I (Expt. I) was conducted with 12 fishes (F12) with and without filter, hydroball and plants (H12 (12 fishes, hydroball), FHP12 (12 fishes, filter, hydroball, 6 plants) and HP12 (12 fishes, hydroball, 6 plants)), and the experiment II (Expt. II) was with and without plants (FH15 (15 fishes, filter, hydroball), FHP15 (15 fishes, filter, hydroball, 6 plants)). The pH level in the water of all the treatments was decreased during the growing period, and the pH and EC of the water were lower in all the treatment with plants than those without plants in both Expt. I and Expt. II. When compared with adequate nutrient concentrations for hydroponics, nitrate nitrogen (NO3-N) and phosphorus (P) concentrations in the fish growing water were higher under the FHP15 treatment in Expt. II; however, potassium (K), calcium (Ca), and magnesium (Mg) were only 16, 49, and 82% of hydroponics, representatively, and iron (Fe) was not detected. The fresh weight of lettuce harvested from the FHP15 treatment was 38 g, only a 30% of marketable lettuce yield. The T-N and P contents of the leaf tissue grown under the FHP15 treatment were close to the optimal level; however, the K, Ca, and iron (Fe) contents were less than the optimal with no deficiency symptom.

Effects of Soil Physical properties on Growth in Wasabia japonica Matsum (토양 배지조성이 고추냉이 생육에 미치는 영향)

  • Byeon, Hak-Soo;Seo, Jeong-Sik;Lim, Soo-Jeong;Heo, Su-Jeong;Seo, Sang-Myung
    • Korean Journal of Medicinal Crop Science
    • /
    • v.9 no.1
    • /
    • pp.76-82
    • /
    • 2001
  • This study was conducted to find out the optimum ranges of soil physical properties for wasabi growth by the relationship of soil physical properties and plant growth. Soil bulk density and hardness were higher in decomposition of granite and river sand than hydroball. This root distribution of surface layer was higher in decomposition of granite and river sand than hydroball. Growth characteristics and yield were higher in hydroball than decomposition of granite and river sand. In inlet site, the marketable rhizome weight in decompasition of granite, river sand, hydroball were 298kg/10a, 401kg/10a, 766kg/10a, respectively. But outlet, the weight in three soils were 251kg/10a, 256kg/10a, 633kg/10a, respectively.

  • PDF

Effect of Scindapsus aureus and Syngonium podophyllum on the Improvement in Indoor Humidity by a Difference of Hydoroculture Volume Ratio and Pot Media (하이드로컬쳐 부피비와 화분용토에 따른 스킨답서스, 싱고늄의 실내습도 개선효과)

  • Ju, Jin-Hee
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.37 no.4
    • /
    • pp.94-99
    • /
    • 2009
  • The purpose of this study was to utilize hydroculture by the vital means of the improvement of indoor relative humidity. This experiment employed a search of the effect of Scindapsus aureus and Syngonium podophyllum that are generalized for hydroculture foliage plant by a difference of volume ratio, pot media and plants species. In the case of Scindapsus aureus, relative humidity was high for growth chamber in which plants presented as opposed to control growth chambers in which there were no plants. Although relative humidity was 25% in control chamber, there was an increase of 40% at a 2% volume ratio, 45% at a 3% volume ratio and 50% at a 5% volume ratio. The relative humidity of Syngonium podophyllum was 40% at a 2% volume ratio, 44% at a 3% volume ratio and 46% at a 5% volume ratio, while the control treatment was 25% relative humidity in hydroculture. Both the control treatment and hydroball pot in a hydroball container were high at first. As time progressed, artificial soil pots in water containers was similar when housed within the control chamber by about 45% relative humidity. Hydroball pots in water container had about 30% relative humidity. Ardisia pusilla of hydroball poIt in hydroball container had about 38% relative humidity.

Comparison of the High Concentration Calcium Chloride(CaCl2) Salt Reduction Effect of Soil Amendment Agent and Planting Pennisetum alopecuroides (토양개량제와 수크령 식재에 따른 고농도 염화칼슘 염분저감 효과 비교)

  • Yang, Ji;Park, Jae-Hyeon;Yoon, Yong-Han;Ju, Jin-Hee
    • Korean Journal of Environment and Ecology
    • /
    • v.34 no.4
    • /
    • pp.345-354
    • /
    • 2020
  • The purpose of this study was to investigate the effects of soil amendment treatments, such as hydroball, and active carbon, and planting Pennisetum alopecuroides for reducing calcium chloride (CaCl2) of soil leachate and the growth of Pennisetum alopecuroides. The experiment planted Pennisetum alopecuroides in a plastic pot with a diameter of 10 cm and a height of 9 cm in a greenhouse April-October 2018. The experimental group comprised six treatments, including Non-treatment (Cont.), Hydroball (H), Active carbon (AC), planting Pennisetum alopecuroides (P), hydroball + planting Pennisetum alopecuroides (H + P), and active carbon + planting Pennisetum alopecuroides (AC + P). The dissolution of the CaCl2 concentration 200ml of 10g/L was irrigated once every two weeks. We measured the growth (plant height, leaf length, leaf width, number of leaves), EC, pH, and exchangeable cations (K+, Ca2+, Na+, and Mg2+) according to the high concentration of CaCl2 in the plant and soil leachate. In a treatment with the 'hydroball' amendment, the soil leachate electrical conductivity (EC), and the cation exchangeable were decreased more than those of the control, while the growth of Pennisetum alopecuroides relative growth rate(RGR) increased. Overall, application with the hydroball amendment added the planting of Pennisetum alopecuroides improved the salt reduction effect more than the control group. These results indicate that the application of the soil amendment agent hydroball was suitable soil amendments in accordance with the high concentration of calcium chloride (CaCl2). Also, Planting Pennisetum alopecuroides is expected to be appropriate for salt-tolerant plant for soil affected by deicing salt agents.

Effect of Quartz Porphyry and Hydroball Ratio on Growth of Some Wood Plant by Water Flooding Culture in Pot (목본식물의 분 담수 재배에서 맥반석 및 하이드로 볼의 비율이 식물의 생장에 미치는 영향)

  • Song, C.Y.;Moon, J.Y.
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.21 no.1
    • /
    • pp.15-28
    • /
    • 2019
  • This study aimed to select the media for water flooding culture of Pinus thunbergii Parl., Juniperus chinensis L. var. sargentii Henry, Osmanthus fragrans Lour., and Chaenomeles japonica Lindl. ex Spach planting into quartz Porphyry and Hydroball. The survival rate of Pinus thunbergii Parl. and Chaenomeles japonica Lindl. ex Spach in hydroball 80%+quartz porphyry 20% was 100%, also the ratio of Juniperus chinensis L. var. sargentii Henry and Osmanthus fragrans Lour. in hydroball 20%+quartz porphyry 80% was 100% and 80%. However survival rate of full water and decomposed granite was less than 80% in Pinus thunbergii Parl., Juniperus chinensis L. var. sargentii Henry, and Chaenomeles japonica Lindl. ex Spach and thee rate of Osmanthus fragrans Lour was less than 50%. The increasing rate of fresh weight for Pinus thunbergii Parl. and Chaenomeles japonica Lindl. ex Spach in hydroball 80%+quartz porphyry 20% was 58.6% and 15.8% which was higher than others, and the fresh weight was increased as increasing the content of hydrobol. However the fresh weight of Juniperus chinensis L. var. sargentii Henry and Osmanthus fragrans Lour. in hydroball 20%+quartz porphyry 80% was 71.4% and 59.7% which was higher than others, and the fresh weight was increased as increasing the content of quartz porphyry. The increasing rate of fresh weight of decomposed granite as control was the lowest by 32.7%, 48.0%, 33.3% and 7.0%, respectively in Pinus thunbergii Parl., Juniperus chinensis L. var. sargentii Henry, Osmanthus fragrans Lour., and Chaenomeles japonica Lindl. ex Spach. Therefore the survival rate and fresh weight was lower at water and decomposed granite. However the survival rate and increasing fresh weight of Pinus thunbergii Parl. and Chaenomeles japonica Lindl. ex Spach was higher as increasing the rate of hydrobol. And the survival rate and fresh weight of Juniperus chinensis L. var. sargentii Henry and Osmanthus fragrans Lour was higher as increasing the rate of quartz porphyry.

Photosynthetic Response of Foliage Plants Related to Light Intensity, $CO_2$ Concentration, and Growing Medium for the Improvement of Indoor Environment (실내 환경 개선을 위한 광도, 이산화탄소 농도 및 배지 종류에 따른 실내 관엽식물들의 광합성 반응)

  • Park, Sin-Ae;Kim, Min-Gi;Yoo, Mung-Hwa;Oh, Myung-Min;Son, Ki-Cheol
    • Journal of Bio-Environment Control
    • /
    • v.19 no.4
    • /
    • pp.203-209
    • /
    • 2010
  • This study was performed to investigate photosynthetic responses of 4 foliage plants in relation to light intensity, carbon dioxide concentration, and media, and to select efficient plants for the indoor environment control based on the results. Four foliage plants used in this study included Syngonium podophyllum, Schefflera arboricola cv. Hong Kong, Dieffenbachia amoena, and Dracaena deremensis cv. Warneckii Compacta. The plants cultivated in two different growth media, peatmoss and hydroball, and subjected to various light intensities (0, 30, 50, 80, 100, 200, 400, and $600\;{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ PPFD) and $CO_2$ levels (0, 50, 100, 200, 400, 700, 1000, and $1500\;{\mu}mol{CO_2}{\cdot}mol^{-1}$). As a result of the photosynthetic rate of foliage plants according to change of light intensity and $CO_2$ levels, Schefflera arboricola and Dieffenbachia amoena showed high apparent quantum yield, which stands for the photosynthetic rate under low light intensity, and both plants also recorded higher photosynthetic rate under high $CO_2$ concentration compared to the other two indoor plants. Dracaena deremensis showed the lowest photosynthetic rate under the low light intensity or high $CO_2$ concentration. There were inconsistent results in photosynthetic rate of foliage plants grown in peatmoss or hydroball. Higher photosynthetic rate was observed in Schefflera arboricola with peatmoss rather than hydroball as light and $CO_2$ concentration increased. However, hydroball had a positive effect on Dieffenbachia amoena in terms of photosynthetic rate. In case of Syngonium podophyllum, peatmoss induced higher photosynthetic rate according to increased light intensity, but there was no effect of media on the rate under various $CO_2$ treatements. In contrast, media did not affect to photosynthetic efficiency of Dracaena deremensis subjected to various light intensities and the rate of Dracaena deremensis with peatmoss was a little high when $CO_2$ concentration increased. In conclusion, potential plants for the indoor air pulification and environmental control were Schefflera arboricola and Dieffenbachia amoena because they showed high photosynthetic rate under typical indoor conditions, low light intensity and high $CO_2$ concentration.

Leaf Mineral Contents and Growth Characteristics of Strawberry Grown in Aquaponic System with Different Growing Media in a Plant Factory (식물공장형 아쿠아포닉스 시스템에서 배지 종류에 따른 딸기 잎의 무기이온 함량과 생육 특성)

  • Su-Hyun Choi;Min-Kyung Kim;Young-Ae Jeong;Seo-A Yoon;Eun-Young Choi
    • Journal of Bio-Environment Control
    • /
    • v.32 no.2
    • /
    • pp.122-131
    • /
    • 2023
  • This study was aimed to determine the effects of grow media on the mineral contents of the leaves and growth characteristics of strawberry grown under aquaponics system in a plant factory. For aquaculture, 12 fish (Cyprinus carpio) (total weight, 2.0 kg) were raised in an aquaponics tank (W 0.7 m × L 1.5 m × H 0.45 m, 472.5 L) filled with 367.5 L of water at a density of 5.44 kg·m-3 and total 34 of strawberry seedlings were transplanted in the pots filed with 200 g of orchid stone, hydroball or polyurethane sponge in the growing bed (W 0.7 m × L 1.5 m × H 0.22 m) laid out with holly acrylic sheet (140×60 mm, Ø80) on the top of the system. The pH and EC of the aquaponic solution was ranged from 7.6 to 4.9 and 0.24-0.91 dS·m-1, respectively. The concentration of NO3-N was about 28% lower than that of the hydroponic standard solution, and K, Fe and B were 10, 27 and 3.8 times lower, respectively; however, the mineral contents of strawberry leaves were in the appropriate ranges with lower contents in the leaves grown with sponge media. The organic content (OM), nitrogen (N), phosphorus (P), and potassium (K) of the sludge were 61.5, 5.72, 8.92, and 0.24%, respectively. The leaf area, leaf number, and dry and fresh weights of shoot at 81 DAT were significantly higher in the hydroball, and the average number of fruits per plant was significantly higher in both the orchid stone and hydroball. There was no significant difference in the fresh and dry weights of fruits. Integrated all the results suggest that the orchid stone and hydroball media are more effective to utilize nutrients in solid particles of aquaponic solution, compared to the polyurethane sponge.

Comparison of Indoor CO2 Removal Capability of Five Foliage Plants by Photosynthesis (다섯가지 관엽식물의 광합성에 의한 실내 이산화탄소 제거능력 비교)

  • Park, Sin-Ae;Kim, Min-Gi;Yoo, Mung-Hwa;Oh, Myung-Min;Son, Ki-Cheol
    • Horticultural Science & Technology
    • /
    • v.28 no.5
    • /
    • pp.864-870
    • /
    • 2010
  • This study was conducted to determine the effects of foliage plants on reducing indoor carbon dioxide ($CO_2$). Five foliage plants such as $Hedera$ $helix$ L., $Ficus$ $benjamina$ L., $Pachira$ $aquatica$, $Chamaedorea$ $elegans$, and $Ficus$ $elastica$ were selected and cultivated in two different growth medium (peatmoss and hydroball). Each plant was placed in an airtight chamber and then treated with the combinations of two different $CO_2$ concentrations (500 or 1,000 ppm) and two different light intensities (50 or $200{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$). The change of $CO_2$ concentration (ppm) in the airtight chamber during day and night was measured and then converted into the photosynthetic rate (${\mu}mol\;CO_2{\cdot}m^{-2}{\cdot}s^{-1}$). As the results, each foliage plant reduced $CO_2$ level in the airtight chamber for one hour by photosynthesis. $Pachira$ $aquatica$ and $Ficus$ $elastica$ absorbed $CO_2$ more effectively compared to the other plants. The plants exposed to higher $CO_2$ concentration (1,000 ppm) and higher light intensity ($200{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$) showed more effective $CO_2$ elimination rate and photosynthetic rate. The plants that have wide leaves and big leaf areas such as $Pachira$ $aquatica$, $Hedera$ $helix$ L.,and $Ficus$ $elastica$ showed higher photosynthetic rate than the other plants that have smaller leaves. Released $CO_2$ concentration by respiration of the plants during the night was very low compared to the absorbed $CO_2$ concentration by photosynthesis during the day. There was no significant difference between peatmoss and hydroball medium on reducing $CO_2$ concentration and increasing photosynthetic rate. In conclusion, this study suggested that foliage plants can effectively eliminate indoor $CO_2$. Optimum environmental control in relation to photosyntheis and usage of right indoor foliage plants having lots of leaves and showing active photosynthesis even under low light intensity like indoor light condition would be required to increase the elimination capacity of indoor $CO_2$.