• 제목/요약/키워드: hydro-power turbine

Search Result 128, Processing Time 0.021 seconds

An Application Case Study of Improving Performance of Small Hydro-power (소수력 성능향상 사례연구)

  • Kim, Sang-Gyun;Park, Ji-Kun;Lee, Yeon-Ju
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.165.1-165.1
    • /
    • 2011
  • In this paper, it is intended to study about deferences of design and operation properties between large and small hydro-power house's turbine which type is reaction. In generally, turbine of large hydro-power has a more safe and effective energy output mechanisms than small hydro-power's because the turbine of small hydro-power is more sensitive to hydraulic losses. But, it is more effective for the all energy market to improve the capability and efficiency of small hydro-power in the present status of increasing construction of small hydro-power than large hydro-power. Therefore, we intend to investigate and introduce the way to enhance the efficiencies of reaction turbine adopted to small hydro-power.

  • PDF

Performance Analysis of a Cross Flow Hydro Turbine by Runner Blade Number (소수력발전용 횡류수차의 러너 블레이드 깃수에 따른 성능해석)

  • Choi, Young-Do;Jin, Chang-Fu;Lim, Jae-Ik;Kim, You-Taek;Lee, Young-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.5
    • /
    • pp.698-706
    • /
    • 2008
  • Performance improvement of Small hydro turbine is a very important subject to solve in the stage of introduction and development of the turbine. Cross-flow hydro turbine should be also studied more in detail for the turbine performance in order to extend the sites of application. In order to improve the turbine performance, the effect of the turbine shape on the turbine performance should be examined. Therefore, the effect of runner blade number on the turbine performance is investigated by use of a commercial CFD code. The results show that runner blade number gives remarkable effect on the efficiency and output power of the turbine. Pressure on the surface of the runner blade changes considerably by the blade number at Stage 1, but relatively small change of velocity distribution occurs in the flow passage.

Performance and Internal Flow of a Cross-Flow Type Hydro Turbine for Wave Power Generation (파력발전용 횡류형 수력터빈의 성능 및 내부유동)

  • Choi, Young-Do;Cho, Young-Jin;Kim, You-Taek;Lee, Young-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.11 no.3
    • /
    • pp.22-29
    • /
    • 2008
  • Clean and renewable energy technologies using ocean energy give us non-polluting alternatives to fossil and nuclear-fueled power plants to meet establishment of countermeasures against the global warming and growing demand for electrical energy. Among the ocean energy resources, wave power takes a growing interest because of its enormous amount of potential energy in the world. Therefore, various types of wave power conversion system to capture the energy of ocean waves have been developed. However, suitable turbine type is not normalized yet because of relatively low efficiency of the turbine systems. The purpose of this study is to investigate the internal flow and performance characteristics of a cross-flow type hydro turbine, which will be built in a caisson for wave power generation. Numerical simulation using a commercial CFD code is conducted to clarify the effects of the turbine rotation speed and flow rate variation on the turbine characteristics. The results show that the output power of the cross-flow type hydro turbine with symmetric nozzle shape is obtained mainly from Stage 2. Turbine inlet configuration should be designed to obtain large amount of flow rate because the static pressure and absolute tangential velocity are influenced considerably by inlet flow rate.

A Study on the Modeling Analysis for Kaplan Micro-turbines (케프란 마이크로터빈의 모델링 해석에 관한 연구)

  • Kim, O.S.;Kim, I.S.;Kim, H.H.;Shim, J.Y.
    • Journal of Power System Engineering
    • /
    • v.10 no.4
    • /
    • pp.105-110
    • /
    • 2006
  • Among many other alternative energy resources, small scale hydro power has been brought into attention as a reliable source of energy today, which had been relatively neglected since 1960s. Especially, Kaplan micro-turbine can be applied to various kind of small hydro power plants, such as reservoirs for agriculture purpose, sewage treatment plants and water purification plants. However present low head of Kaplan micro-turbines and small scale hydro turbines, have limitations in the minimum required head and flow rate for efficient operation. This research is to develop modeling analysis for the Kaplan micro-turbine, which can improve economical features of small hydro power plants. The contents and scope of this research are the efficiency improvement of Kaplan micro-turbine.

  • PDF

Construction of Marine Small Hydro Power Plant using Discharge Water of Fish Farm (양어장 방류수를 이용한 해양소수력발전소 구축에 관한 연구)

  • Hwang, Yeong-Cheol;Choi, Young-Do
    • The KSFM Journal of Fluid Machinery
    • /
    • v.16 no.5
    • /
    • pp.11-17
    • /
    • 2013
  • This study is aimed to construct a marine small hydro power plant using discharge water of fish farm in Jeju Haengwon-ri. The difference of design methods between marine small hydro power plant and land small hydro power plant is to consider the tides. Moreover, ground condition should be examined because gushout sea water comes out from the ground at high tide in Jeju as the ground of Jeju beach consists of basalt stone. From the field test of the turbine generator after construction of the power plant, output power and efficiency of the turbine generator shows good conformance to the required conditions.

Development of a Hydro Turbine Governor and Validation Test

  • Kim, Jong-An;Woo, Joo-Hee;Choi, In-Kyu
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.1 no.1
    • /
    • pp.105-108
    • /
    • 2015
  • A digital Governor (GOV) has been developed for being used for a Francis hydro turbine, and the validity of the GOV has been tested. As for the hardware system for the GOV, we purchased a basic digital control system that already had proven its reliability in the power industry. We developed a set of new GOV software and integrated it with the hardware system, and finally verified the performance of the whole GOV system. For the human-machine interface (HMI), we configured and implemented appropriate graphic interfaces for the turbine operations. This paper describes the major GOV control functions, approaches we took in developing the GOV control logics, and the validity tests and the results.

Field Test for Performance Evaluation of a Tubular Turbine in Marine Small Hydro Power Plant (해양소수력발전소 튜블러 수차 성능평가를 위한 현장시험)

  • Hwang, Yeong-Ho;Lee, Young-Ho;Choi, Young-Do
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.8
    • /
    • pp.1070-1077
    • /
    • 2011
  • This study includes field test results for performance evaluation of a tubular turbine in marine small hydro power plant. Minimum output power of the tested turbine generator is examined with using of the measured effective head, output power and efficiency. For the rated and maximum output power tests, corrected values from the result of turbine model test are used for the performance evaluation, because experimental conditions of field test at the rated and maximum output powers are restricted correctly. Performance of the test turbine shows good conformance with the suggested guarantee values of output power and efficiency at the measured points of minimum, rated and maximum output power.

A Study on the Nozzle Shapes of a Cross-Flow Type Hydro Turbine for Wave Power Generation (파력발전용 횡류형 수력터빈의 노즐형상에 관한 연구)

  • Choi, Young-Do;Kim, Chang-Coo;Kim, You-Taek;Lee, Young-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.11 no.3
    • /
    • pp.30-35
    • /
    • 2008
  • The purpose of this study is to examine the effect of nozzle shapes on the performance and internal flow characteristics of a cross-flow type hydro turbine for wave power generation. The performance of the turbine is calculated with the variation of rotational speed for 4 types of the nozzle shape using a commercial CFD code. The results show that nozzle shape should be designed considering available head of the turbine. Best efficiencies of the turbine by 4 types of the nozzle shape do not change largely but overall performances varies mainly by the nozzle width. The output power of the cross-flow type hydro turbine changes considerably by the nozzle shape and a partial region of stage 2 in the runner blade passage produces maximum regional output power in comparison with the other runner blade passage areas.

Performance and Internal Flow of Cross-Flow Hydro Turbine by Effective Head (횡류수차의 유효낙차 변화에 따른 성능 및 내부유동)

  • Kim, Doo-Hwan;Choi, Young-Do;Lim, Jae-Ik;Lee, Young-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.191.1-191.1
    • /
    • 2010
  • Global concerns about environmental issues such as a greenhouse effect are increasing gradually. Quantity of emission of carbon dioxide by Hydro-Power Plants is smaller than those by power plants of other renewable energy sources. Manufacturing costs of hydro turbine is relatively very expensive because the structure of hydro turbine is very complex. Therefore, cross-flow turbine is adopted in this study because of its simple structure and high possibility of applying to small hydropower. The result shows that as effective head increases, tangential and radial flow velocities increase and thus, the increased tangential velocity contributes to the increase of angular momentum and output torque.

  • PDF

Construction of small hydropower facilities performance evaluation system (소수력 발전설비 성능평가 시스템 구축)

  • Kim, Youngjoon;Kim, Yongyeol;Cho, Yong;Ko, Jaemyoung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.193.2-193.2
    • /
    • 2010
  • Domestic hydroelectric power plants has been manufactured as the design condition by the demand. Hydraulic turbine power plants operating at appointed load shall be operate stable in terms of pressure, discharge, rotational speed and torque. A performance guarantees for hydro turbines shall be contain, as a minimum, guarantees covering power, discharge and specific hydraulic energy, efficiency, maximum momentary overspeed and maximum momentary pressure and maximum steady-state runaway speed, as well as guarantees related to cavitation. But, present in Korea, the absence of testing laboratories and technical criteria for the performance test of small hydropower degrades the efficiency of the domestic hydropower machines, and makes it difficult to objectively evaluate the performance of hydro turbine. Therefore We planned making a basis of performance test of small hydropower turbine by using our flowmeter calibration system the largest one in Korea. We planned the maximum measurable power of hydro turbine will be 200 kW in our system.

  • PDF