• Title/Summary/Keyword: hydro energy

Search Result 484, Processing Time 0.026 seconds

Stand-Alone Pico-Hydro Generation System using a High-Efficiency IPM Synchronous Generator

  • Kurihara, Kazumi;Kubota, Tomotsugu
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.3 no.2
    • /
    • pp.121-125
    • /
    • 2014
  • This paper presents a successful stand-alone pico-hydro generation system using a high-efficiency interior permanent-magnet (IPM) synchronous generator. A 1-kW 4-pole V-type IPM generator with low voltage regulation is used for laboratory test in stand-alone hydro energy conversion system. It has been found from experimental results that the constant output voltage is supplied stably by the proposed system under wide speed range.

AN ANALYSIS OF PERFORMANCE CHARACTERISTICS FOR SMALL HYDRO POWER PLANTS

  • Park, Wan-Soon;Lee, Chul-Hyung;Jeong, Sang-Man
    • Water Engineering Research
    • /
    • v.2 no.1
    • /
    • pp.11-19
    • /
    • 2001
  • A performance prediction model for Small Hydro Power(SHP) sites has been studied and developed. Twelve SHP sites were selected and the performance characteristics were analyzed by using the developed model. Also, primary design specifications such as design flowrate, plant capacity, operational rate were suggested and feasibility for small hydro power sites were estimated. It was found that the design flowrate is most important parameter to exploit SHP plant and the methodology developed in this study can be a useful tool to analyze the performance of SHP sites.

  • PDF

A Study on the Drift Effect of Instrument Channel for Nuclear Power Plant (원전 계측 채널 Drift에 관한 연구)

  • Kim, In Hwan;Kim, Hyeong Taek;Kim, Yun Jung
    • Journal of Energy Engineering
    • /
    • v.23 no.3
    • /
    • pp.96-101
    • /
    • 2014
  • The Instrument Channel setpoints of the Reactor Protection System(RPS) and the Engineered Safety Feature Actuation System(ESFAS) ensures the safety of Nuclear Power Plants (NPPs), and the actuation of the protection system should be guaranteed on power change condition. The goal of this study is to verify the appropriateness of the sensor drift and rack drift which are important factors for setpoints evaluation and to improve the setpoints margin using the operation data, design specifications and operation manuals of the NPPS.

Annual Energy Production Maximization for Tidal Power Plants with Evolutionary Algorithms

  • Kontoleontos, Evgenia;Weissenberger, Simon
    • International Journal of Fluid Machinery and Systems
    • /
    • v.10 no.3
    • /
    • pp.264-273
    • /
    • 2017
  • In order to be able to predict the maximum Annual Energy Production (AEP) for tidal power plants, an AEP optimization tool based on Evolutionary Algorithms was developed by ANDRITZ HYDRO. This tool can simulate all operating modes of the units (bi-directional turbine, pump and sluicing mode) and provide the optimal plant operation that maximizes the AEP to the control system. For the Swansea Bay Tidal Power Plant, the AEP optimization evaluated all different hydraulic and operating concepts and defined the optimal concept that led to a significant AEP increase. A comparison between the optimal plant operation provided by the AEP optimization and the full load operating strategy is presented in the paper, highlighting the advantage of the method in providing the maximum AEP.

The Effects of Design Parameters for Small Scale Hydro Power Plant with Climate Change (기후변화에 의한 소수력발전소 설계변수의 영향)

  • Park, Wan-Soon;Lee, Chul-Hyung
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.267-272
    • /
    • 2009
  • The effects of design parameters for small scale hydro power(SSHP) plants due to rainfall condition have been studied. The model to predict hydrologic performance for SSHP plants is used in this study. The results from analysis for rainfall conditions based on KIER model show that the capacity and load factor of SSHP site had large difference between the period. Especially, the hydrologic performance of SSHP site due to rainfall condition of recent period varied in design flowrate sensitively. And also, the methodology represented in this study can be used to decide the primary design specifications of SSHP sites.

  • PDF

Development of Engineering Program for APR1400 Feedwater Supplying System (APR1400 급수공급계통 엔지니어링 프로그램 개발)

  • Yeom, Dong Un;Ju, Tae Young;Hyun, Jin Woo
    • Journal of Energy Engineering
    • /
    • v.26 no.2
    • /
    • pp.12-22
    • /
    • 2017
  • Korea Hydro & Nuclear Power Co. (KHNP) has implemented engineering programs for operating nuclear power plants. Engineering programs are maintenance rule (MR), functional importance determination (FID), single point vulnerability (SPV) and functional equipment group (FEG). Recently, KHNP has developed engineering programs for APR1400 feedwater supplying system to establish the advanced engineering system and will verify the suitability of engineering programs through implementing in new nuclear power plant. Consequently, it is expected that the reliability of APR1400 feedwater supplying system will be improved by implementing engineering programs.

A study of the effectiveness of Online Maintenance for Nuclear Power Plant (원자력발전소 가동중정비 도입 효용성 고찰)

  • Hyun, Jin Woo;Yeom, Dong Un;Lee, Sang Dae
    • Journal of Energy Engineering
    • /
    • v.29 no.1
    • /
    • pp.52-57
    • /
    • 2020
  • OLM(On-Line Maintenance) is PM(Preventive Maintenance) activity of safety related equipment during running of Nuclear Power Plants. Korea Hydro & Nuclear Power-co.(KHNP) and regulator institute already reviewed the adoption of on-line maintenance in 2010 but now because of changing conditions of nuclear industry it has been halted. Even though that, OLM is one of the most effective programs to enhance safety and operability of Nuclear power plant. Therefore this paper introduce the strengths of OLM and explain why we should apply to Nuclear power plant.

Analysis of Performance Characteristic for Small Scale Hydro Power Plant with Long Term Inflow Condition Change (장기유입량 변화에 의한 소수력발전소 성능특성분석)

  • Park, Wan-Soon;Lee, Chul-Hyung
    • New & Renewable Energy
    • /
    • v.5 no.4
    • /
    • pp.39-43
    • /
    • 2009
  • The variation of inflow at stream and hydrologic performance for small scale hydro power(SSHP) plants due to climate change have been studied. The model, which can predict flow duration characteristic of stream, was developed to analyze the variation of inflow caused from rainfall condition. And another model to predict hydrologic performance for SSHP plants is established. Monthly inflow data measured at Andong dam for 32 years were analyzed. The existing SSHP plant located in upstream of Andong dam was selected and analyzed hydrologic performance characteristics. The predicted results from the developed models show that the data were in good agreement with measured results of long term inflow at Andong dam and the existing SSHP plant. Inflow and ideal hydro power potential had increased greatly in recent years, however, these did not lead annual energy production increment of existing SSHP plant. As a results, it was found that the models represented in this study can be used to predict the primary design specifications and inflow of SSHP plants effectively.

  • PDF

Runner Design and Internal Flow Characteristics Analysis for an Ns=200 Francis Hydro Turbine Model

  • Hwang, Yeong-Cheol;Chen, Zhenmu;Choi, Young-Do;Lee, Young-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.8
    • /
    • pp.698-703
    • /
    • 2016
  • Francis hydro turbines have been most widely used throughout the world because of their wide range of head and flow rate applications. In most applications, they are used for high heads and flow rates. Currently, Korea is developing technology for Francis hydro turbine design and manufacture. In order to understand the internal details of Francis hydro turbines further, a new Francis turbine model runner is designed and model internal flow characteristics are investigated. The specific speed of the Francis hydro turbine model runner is $Ns=200m-kW-min^{-1}$. The runner blade is designed successfully according to the port area and one-dimensional loss analysis. The best efficiency point of the Francis hydro turbine model achieves 90% at the design condition. CFD analysis yields a hill chart of the Francis hydro turbine model for use in predicting performance.

Assessment of Methane Potential in Hydro-thermal Carbonization reaction of Organic Sludge Using Parallel First Order Kinetics (병열 1차 반응속도식을 이용한 유기성 슬러지 수열탄화 반응온도별 메탄생산퍼텐셜 평가)

  • Oh, Seung-Yong;Yoon, Young-Man
    • Korean Journal of Environmental Agriculture
    • /
    • v.35 no.2
    • /
    • pp.128-136
    • /
    • 2016
  • BACKGROUND: Hydrothermal carbonization reaction is the thermo-chemical energy conversion technology for producing the solid fuel of high carbon density from organic wastes. The hydrothermal carbonization reaction is accompanied by the thermal hydrolysis reaction which converse particulate organic matters to soluble forms (hydro-thermal hydrolysate). Recently, hydrothermal carbonization is adopted as a pre-treatment technology to improve anaerobic digestion efficiency. This research was carried out to assess the effects of hydro-thermal reaction temperature on the methane potential and anaerobic biodegradability in the thermal hydrolysate of organic sludge generating from the wastewater treatment plant of poultry slaughterhouse .METHODS AND RESULTS: Wastewater treatment sludge cake of poultry slaughterhouse was treated in the different hydro-thermal reaction temperature of 170, 180, 190, 200, and 220℃. Theoretical and experimental methane potential for each hydro-thermal hydrolysate were measured. Then, the organic substance fractions of hydro-thermal hydrolysate were characterized by the optimization of the parallel first order kinetics model. The increase of hydro-thermal reaction temperature from 170℃ to 220℃ caused the enhancement of hydrolysis efficiency. And the methane potential showed the maximum value of 0.381 Nm3 kg-1-VSadded in the hydro-thermal reaction temperature of 190℃. Biodegradable volatile solid(VSB) content have accounted for 66.41% in 170℃, 72.70% in 180℃, 79.78% in 190℃, 67.05% in 200℃, and 70.31% in 220℃, respectively. The persistent VS content increased with hydro-thermal reaction temperature, which occupied 0.18% for 170℃, 2.96% for 180℃, 6.32% for 190℃, 17.52% for 200℃, and 20.55% for 220℃.CONCLUSION: Biodegradable volatile solid showed the highest amount in the hydro-thermal reaction temperature of 190℃, and then, the optimum hydro-thermal reaction temperature for organic sludge was assessed as 190℃ in the aspect of the methane production. The rise of hydro-thermal reaction temperature caused increase of persistent organic matter content.