• 제목/요약/키워드: hydro energy

검색결과 487건 처리시간 0.029초

Lessons from FIFE on Scaling of Surface Fluxes at Gwangneung Forest Site (광릉 산림지의 지표 플럭스 스케일링에 관한 FIFE로부터의 교훈)

  • Hong Jinkyu;Lee Dongho;Kim Joon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • 제7권1호
    • /
    • pp.4-14
    • /
    • 2005
  • CarboKorea and HydroKorea are the domestic projects aiming to improve our understanding of carbon and water cycles in a typical Korean forest located in a complex terrain with a watershed connected to large rivers. The ultimate goal is to provide a nowcasting of these cycles for the whole Peninsula. The basic strategy to achieve such goal is through the inter- and multi-disciplinary studies that synthesize the in-situ field observation, modeling and remote sensing technology. The challenge is the fact that natural ecosystems are nonlinear and heterogeneous with a wide range of spatio-temporal scales causing the variations of mass and energy exchanges from a leaf to landscape scales. Our paradigm now shifts from temporal variation at a point to spatial patterns and from spatial homogeneity to complexity of water and carbon at multiple scales. Yet, a large portion of our knowledge about land-atmosphere interactions has been established based on tower observations, indicating that the development of scaling logics holds the key to the success of CarboKorea and HydroKorea. Here, we review the pioneering work of FIFE (First ISLSCP Field Experiment) on scaling issues in a temperate grassland and discuss the lessons from it for the application to Gwangneung forest site.

A study on the performance and internal flow of inline Francis turbine

  • Chen, Chengcheng;Inagaki, Morihito;Choi, Young-Do
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제38권10호
    • /
    • pp.1225-1231
    • /
    • 2014
  • This paper presents the performance characteristic of a Francis hydro turbine with an inline casing. This turbine is designed for city water supply system. Due to large changes in ground elevation with high points and low points, some systems may experience larger-than-normal required pressures in areas with low ground elevations. One way to dissipate these excess pressures is by the use of an inline-turbine instead of an inline-pressure reducing valve. For best applicability and minimal space consumption, the turbine is designed with an inline casing instead of the common spiral casing. As a characteristic of inline casing, the flow accesses to the runner in the radial direction, showing a low efficiency. The installation of vanes improves the internal flow and gives the positive encouragement to the output power. For the power transmission to the outside of the turbine casing from the runner axis, a belt passage is designed in the inline casing, as its influence, the region after the belt passage shows a relatively low output power. The clearance gap in the runner side space is considered, in which a small volume of flow is contracted into the clearance gap, forming the leakage flow. The leakage flow leads to a decrease in the efficiency.

Which CDM methodology is the best option? A case study of CDM business on S-Water treatment plant

  • Kyung, Daeseung;Lee, Woojin
    • Advances in environmental research
    • /
    • 제1권2호
    • /
    • pp.125-142
    • /
    • 2012
  • Clean development mechanism (CDM) validity study was conducted to suggest better and more adaptable CDM scenario on water treatment plant (WTP). Potential four scenarios for CDM project; improvement of intake pumping efficiency, hydro power plant construction, solar panel construction and system optimization of mechanical mixing process were evaluated on S-WTP in Korea. Net present value (NPV) of each scenario was estimated based on sensitivity analysis with the variable factors to investigate the CDM validity percentile. Hydro power plant construction was the best option for CDM business with 97.76% validity and $1,127,069 mean profit by 9,813 $tonsCO_2e$/yr reduction. CDM validity on improvement of intake pumping efficiency was 90.2% with $124,305 mean profit by huge amount of $CO_2$ mitigation (10,347 $tonsCO_2e$/yr). System optimization of mechanical mixing process reduced 15% of energy consumption (3,184 $tonsCO_2e$/yr) and its CDM validity and mean profit was 77.25% and $23,942, respectively. Solar panel construction could make the effect of 14,094 $tonsCO_2$ mitigation annually and its CDM validity and mean profit was 64.68% and $228,487, respectively.

Design Analysis and Economic Analysis of high Efficiency 100kW Generator for Hydro Power System (소수력 발전용 고효율 100kW 발전기의 설계해석 및 경제성 분석)

  • Jee, In-Ho;Kang, Seung-Jin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • 제65권3호
    • /
    • pp.428-438
    • /
    • 2016
  • This paper shows the design of the 100 kW IPMSG for small hydraulic power generator. The high-efficient generator, method of the dual layer interior permanent magnet was studied to improve the method of the single layer interior permanent magnet, which is mostly used. Analysis of magnet arrangement and cogging torque was done by FEM. According to structure analysis of dual layer interior permanent magnet, the amount of usage of the permanent magnet was reduced and cogging torque was decreased as well. With these successful results, the high-efficient generator design was accomplished. Based on the results of the structure analysis, the test product was designed and manufactured. And the design values and performance outputs were compared and verified with success. Also, the economic feasibility was conducted based on the electric power generated from the test product installed at the site. By the B/C analysis, in case that only SMP was analyzed, B/C ratio was 1.24 at the discount ratio of 5.5%, which considered to be economically feasible. The study is expected to be used for the application of developing large scale high-efficient interior permanent magnet synchronous generator.

Evaluation of mechanical properties of KURT granite under simulated coupled condition of a geological repository (복합 처분환경 모사조건에서의 KURT 화강암의 역학적 물성 변화 평가)

  • Park, Seunghun;Kim, Jin-Seop;Kim, Geon Young;Kwon, Sangki
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • 제21권4호
    • /
    • pp.501-518
    • /
    • 2019
  • The rock properties measured under in-situ geological condition can be used to increase the reliability in numerical simulations with regard to the long-term performance of a high-level waste repository. In this study, the change in mechanical properties of KURT (Korea atomic energy research institute Underground Research Tunnel) granite was evaluated under the simulated THM (Thermo-Hydro-Mechanical) coupled condition due to a deep geological formation in the disposal repository. The rock properties such as uniaxial compression strength, indirect tensile strength, elastic modulus and Poisson's ratio were measured under the coupled test conditions (M, HM, TM, THM). It was found that the mechanical properties of KURT granite is more susceptible to the change in saturation rather than temperature within the test condition of this study. The changes in uniaxial compression strength and indirect tensile strength from the rock samples of dried or saturated conditions showed the maximum relative error of about 20% and 13% respectively under the constant temperature condition. Therefore, it is necessary to use the material properties of rock measured under the coupled THM condition as input parameters for the numerical simulation of long-term performance assessment of a disposal repository

Policy implications for up-scaling of off-grid solar PV for increasing access to electricity in rural areas of Nepal: Best practices and lessons learned

  • Sapkota, Surya Kumar
    • Bulletin of the Korea Photovoltaic Society
    • /
    • 제6권1호
    • /
    • pp.8-20
    • /
    • 2020
  • Nepal has huge potential of hydro and other renewable energy resources including solar energy. However, only 70% of the total population have access to electricity despite the long history of hydropower development in the country. Still more than 37% population in rural areas and around 73% population in Karnali Province, one of the least developed provinces, are living without access to electricity despite taking several initiatives and implementing various policies by government supporting electrification in off-grid rural areas. Government together with donors and private sector has extensively been promoting the off-grid solar photovoltaic (PV) echnology in un-electrified areas to increase electricity access. So far, more than 900,000 households in rural areas of Nepal are getting electricity from stand-alone solar PV systems. However, there are many challenges including financial, technical, institutional, and governance barriers in Nepal. This study based on extensive review of literatures and author's own long working experiences in renewable energy sector in Nepal, shares the best practices and lessons of off-grid solar PV for increasing access to electricity in rural areas of Nepal. This study suggests that flexible financial instruments, financial innovations, bundling of PV systems for concentrating energy loads, adopting standards process, local capacity building, and combination of technology, financing and institutional aspects are a key for enhancing effectiveness of solar PV technology in rural areas of Nepal.

Induced Production Analysis for Photovoltaic Power Generation Equipment in Korea using Input-Output Table 2009 (산업연관표 2009를 이용한 태양광발전설비산업의 생산유발효과분석)

  • Kim, Yoon-Kyung
    • New & Renewable Energy
    • /
    • 제8권1호
    • /
    • pp.8-17
    • /
    • 2012
  • The Korean government pushed ahead various policies to disseminate photovoltaic (PV), wind power, small hydro, bio-fuel, etc. Renewable energy system (RES) budget of the Korean government increased from 118 billion won of 2003 to 876.6 billion won of 2010. The R&D budgetary supports for RES increased by 6.8 times in the period 2003-2010. It is necessary to confirm RES budget expenditure that renewable energy promotion policy makes good performance evaluated in quantity level. This paper made Input-Output Table 2009 contains photovoltaic power generation equipment industry as a dependent sector and analyzed induced production effect by demand of photovoltaic power generation equipment industry. From the empirical analysis result, additional demand in photovoltaic power generation equipment induced 1.932 times of induced production in Korea. Each of industry sector has positive induced production from the additional demand in photovoltaic power generation equipment. Renewable energy promotion in photovoltaic power generation is considered together with industry policy as the option to sustain economic growth.

Thermal Analysis and Equivalent Lifetime Prediction of Insulation Material for Nuclear Power Cable (원전 케이블용 절연재료의 열분석과 등가수명)

  • Kim, Ji-Yeon;Yang, Jong-Suk;Park, Kyeung-Heum;Seong, Baek-Yong;Bang, Jeong-Hwan;Park, Dae-Hee
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • 제29권1호
    • /
    • pp.17-22
    • /
    • 2016
  • The activation energy of a material is an important factor that significantly affects the lifetime and can be used to develop a degradation model. In this study, a thermal analysis was carried out to evaluate and collect quantitative data on the degradation of insulation materials like EPR and CSP used for nuclear power plant cables. The activation energy was determined from the relationship between log ${\beta}$ and 1/T based on the Flynn.Wall.Ozawa method, by a TGA test. The activation energy was also derived from the relationship between ln(t) and 1/T based on isothermal analysis, by an OIT test. The activation energy of EPR derived from thermal analysis was used to calculate the accelerated aging time corresponding to the number of years of use, employing the Arrhenius equation, and determine the elongation corresponding to the accelerated aging time.

RESEARCH ACTIVITIES ON A SUPERCRITICAL PRESSURE WATER REACTOR IN KOREA

  • Bae, Yoon-Yeong;Jang, Jin-Sung;Kim, Hwan-Yeol;Yoon, Han-Young;Kang, Han-Ok;Bae, Kang-Mok
    • Nuclear Engineering and Technology
    • /
    • 제39권4호
    • /
    • pp.273-286
    • /
    • 2007
  • This paper presents the research activities performed to date for the development of a supercritical pressure water-cooled reactor (SCWR) in Korea. The research areas include a conceptual design of an SCWR with an internal flow recirculation, a reactor core conceptual design, a heat transfer test with supercritical $CO_2$, an adaptation of an existing safety analysis code to the supercritical pressure condition, and an evaluation of candidate materials through a corrosion study. Methods to reduce the cladding temperature are introduced from two different perspectives, namely, thermal-hydraulics and core neutronics. Briefly described are the results of an experiment on the heat transfer at a supercritical pressure, an experiment that is essential for the analysis of the subchannels of fuel assemblies and the analysis of a system safety. An existing system code has been adapted to SCWR conditions, and the process of a first-hand validation is presented. Finally, the corrosion test results of the candidate materials for an SCWR are introduced.

Development of Han River Multi-Reservoir Operation Rules by Linear Tracking (선형추적에 의한 한강수계 복합 저수지 계통의 이수 조작기준 작성)

  • Yu, Ju-Hwan
    • Journal of Korea Water Resources Association
    • /
    • 제33권6호
    • /
    • pp.733-744
    • /
    • 2000
  • Due to the randomness of reservoir inflow and supply demand it is not easy to establish an optimal reservoir operation rule. However, the operation rule can be derived by the implicit stochastic optimization approach using synthetic inflow data with some demand satisfied. In this study the optimal reservoir operation which was reasonably formulated as Linear Tracking model for maximizing the hydro-energy of seven reservoirs system in the Han river was performed by use of the optimal control theory. Here the operation model made to satisfy the 2001st year demand in the capital area inputted the synthetic inflow data generated by multi-site Markov model. Based on the regressions and statistic analyses of the optimal operation results, monthly reservoir operation rules were developed with the seasonal probabilities of the reservoir stages. The comparatively larger dams which would have more controllability such as Hwacheon, Soyanggang, and Chungju had better regressions between the storages and outflows. The effectiveness of the rules was verified by the simulation during actually operating period.period.

  • PDF