• 제목/요약/키워드: hydraulics

검색결과 497건 처리시간 0.021초

Case study of the mining-induced stress and fracture network evolution in longwall top coal caving

  • Li, Cong;Xie, Jing;He, Zhiqiang;Deng, Guangdi;Yang, Bengao;Yang, Mingqing
    • Geomechanics and Engineering
    • /
    • 제22권2호
    • /
    • pp.133-142
    • /
    • 2020
  • The evolution of the mining-induced fracture network formed during longwall top coal caving (LTCC) has a great influence on the gas drainage, roof control, top coal recovery ratio and engineering safety of aquifers. To reveal the evolution of the mining-induced stress and fracture network formed during LTCC, the fracture network in front of the working face was observed by borehole video experiments. A discrete element model was established by the universal discrete element code (UDEC) to explore the local stress distribution. The regression relationship between the fractal dimension of the fracture network and mining stress was established. The results revealed the following: (1) The mining disturbance had the most severe impact on the borehole depth range between approximately 10 m and 25 m. (2) The distribution of fractures was related to the lithology and its integrity. The coal seam was mainly microfractures, which formed a complex fracture network. The hard rock stratum was mainly included longitudinal cracks and separated fissures. (3) Through a numerical simulation, the stress distribution in front of the mining face and the development of the fracturing of the overlying rock were obtained. There was a quadratic relationship between the fractal dimension of the fractures and the mining stress. The results obtained herein will provide a reference for engineering projects under similar geological conditions.

Contribution of thermal-hydraulic validation tests to the standard design approval of SMART

  • Park, Hyun-Sik;Kwon, Tae-Soon;Moon, Sang-Ki;Cho, Seok;Euh, Dong-Jin;Yi, Sung-Jae
    • Nuclear Engineering and Technology
    • /
    • 제49권7호
    • /
    • pp.1537-1546
    • /
    • 2017
  • Many thermal-hydraulic tests have been conducted at the Korea Atomic Energy Research Institute for verification of the SMART (System-integrated Modular Advanced ReacTor) design, the standard design approval of which was issued by the Korean regulatory body. In this paper, the contributions of these tests to the standard design approval of SMART are discussed. First, an integral effect test facility named VISTA-ITL (Experimental Verification by Integral Simulation of Transients and Accidents-Integral Test Loop) has been utilized to assess the TASS/SMR-S (Transient and Set-point Simulation/Small and Medium) safety analysis code and confirm its conservatism, to support standard design approval, and to construct a database for the SMART design optimization. In addition, many separate effect tests have been performed. The reactor internal flow test has been conducted using the SCOP (SMART COre flow distribution and Pressure drop test) facility to evaluate the reactor internal flow and pressure distributions. An ECC (Emergency Core Coolant) performance test has been carried out using the SWAT (SMART ECC Water Asymmetric Two-phase choking test) facility to evaluate the safety injection performance and to validate the thermal-hydraulic model used in the safety analysis code. The Freon CHF (Critical Heat Flux) test has been performed using the FTHEL (Freon Thermal Hydraulic Experimental Loop) facility to construct a database from the $5{\times}5$ rod bundle Freon CHF tests and to evaluate the DNBR (Departure from Nucleate Boiling Ratio) model in the safety analysis and core design codes. These test results were used for standard design approval of SMART to verify its design bases, design tools, and analysis methodology.

EXPERIMENTS ON THE PERFORMANCE SENSITIVITY OF THE PASSIVE RESIDUAL HEAT REMOVAL SYSTEM OF AN ADVANCED INTEGRAL TYPE REACTOR

  • Park, Hyun-Sik;Choi, Ki-Yong;Choi, Seok;Yi, Sung-Jae;Park, Choon-Kyung;Chung, Moon-Ki
    • Nuclear Engineering and Technology
    • /
    • 제41권1호
    • /
    • pp.53-62
    • /
    • 2009
  • A set of experiments has been conducted on the performance sensitivity of the passive residual heat removal system (PRHRS) for an advanced integral type reactor, SMART, by using a high temperature and high pressure thermal-hydraulic test facility, the VISTA facility. In this paper the effects of the opening delay of the PRHRS bypass valves and the closing delay of the secondary system isolation valves, and the initial water level and the initial pressure of the compensating tank (CT) are investigated. During the reference test a stable flow occurs in a natural circulation loop that is composed of a steam generator secondary side, a secondary system, and a PRHRS; this is ascertained by a repetition test. When the PRHRS bypass valves are operated 10 seconds later than the secondary system isolation valves, the primary system is not properly cooled. When the secondary system isolation valves are operated 10 or 30 seconds later than the PRHRS bypass valves, the primary system is effectively cooled but the inventory of the PRHRS CT is drained earlier. As the initial water level of the CT is lowered to 16% of the full water level, the water is quickly drained and then nitrogen gas is introduced into the PRHRS, resulting in the deterioration of the PRHRS performance. When the initial pressure of the PRHRS is at 0.1MPa, the natural circulation is not performed properly. When the initial pressures of the PRHRS are 2.5 or 3.5 MPa, they show better performance than did the reference test.

CORE THERMAL HYDRAULIC BEHAVIOR DURING THE REFLOOD PHASE OF COLD-LEG LBLOCA EXPERIMENTS USING THE ATLAS TEST FACILITY

  • Cho, Seok;Park, Hyun-Sik;Choi, Ki-Yong;Kang, Kyoung-Ho;Baek, Won-Pil;Kim, Yeon-Sik
    • Nuclear Engineering and Technology
    • /
    • 제41권10호
    • /
    • pp.1263-1274
    • /
    • 2009
  • Several experimental tests to simulate a reflood phase of a cold-leg LBLOCA of the APR1400 have been performed using the ATLAS facility. This paper describes the related experimental results with respect to the thermal-hydraulic behavior in the core and the system-core interactions during the reflood phase of the cold-leg LBLOCA conditions. The present descriptions will be focused on the LB-CL-09, LB-CL-11, LB-CL-14, and LB-CL-15 tests performed using the ATLAS. The LB-CL-09 is an integral effect test with conservative boundary condition; the LB-CL-11 and -14 are integral effect tests with realistic boundary conditions, and the LB-CL-15 is a separated effect test. The objectives of these tests are to investigate the thermal-hydraulic behavior during an entire reflood phase and to provide reliable experimental data for validating the LBLOCA analysis methodology for the APR1400. The initial and boundary conditions were obtained by applying scaling ratios to the MARS simulation results for the LBLOCA scenario of the APR1400. The ECC water flow rate from the safety injection tanks and the decay heat were simulated from the start of the reflood phase. The simulated core power was controlled to be 1.2 times that of the ANS-73 decay heat curve for LB-CL-09 and 1.02 times that of the ANS-79 decay curve for LB-CL-11, -14, and -15. The simulated ECC water flow rate from the high pressure safety injection pump was 0.32 kg/s. The present experimental data showed that the cladding temperature behavior is closely related to the collapsed water level in the core and the downcomer.

FIRST ATLAS DOMESTIC STANDARD PROBLEM (DSP-01) FOR THE CODE ASSESSMENT

  • Kim, Yeon-Sik;Choi, Ki-Yong;Kang, Kyoung-Ho;Park, Hyun-Sik;Cho, Seok;Baek, Won-Pil;Kim, Kyung-Doo;Sim, Suk-K.;Lee, Eo-Hwak;Kim, Se-Yun;Kim, Joo-Sung;Choi, Tong-Soo;Kim, Cheol-Woo;Lee, Suk-Ho;Lee, Sang-Il;Lee, Keo-Hyoung
    • Nuclear Engineering and Technology
    • /
    • 제43권1호
    • /
    • pp.25-44
    • /
    • 2011
  • KAERI has been operating an integral effect test facility, ATLAS (Advanced Thermal-Hydraulic Test Loop for Accident Simulation), for accident simulations of advanced PWRs. Regarding integral effect tests, a database for major design basis accidents has been accumulated and a Domestic Standard Problem (DSP) exercise using the ATLAS has been proposed and successfully performed. The ATLAS DSP aims at the effective utilization of an integral effect database obtained from the ATLAS, the establishment of a cooperative framework in the domestic nuclear industry, better understanding of thermal hydraulic phenomena, and an investigation of the potential limitations of the existing best-estimate safety analysis codes. For the first ATLAS DSP exercise (DSP-01), integral effect test data for a 100% DVI line break accident of the APR1400 was selected by considering its technical importance and by incorporating comments from participants. Twelve domestic organizations joined in this DSP-01 exercise. Finally, ten of these organizations submitted their calculation results. This ATLAS DSP-01 exercise progressed as an open calculation; the integral effect test data was delivered to the participants prior to the code calculations. The MARS-KS was favored by most participants but the RELAP5/MOD3.3 code was also used by a few participants. This paper presents all the information of the DSP-01 exercise as well as the comparison results between the calculations and the test data. Lessons learned from the first DSP-01 are presented and recommendations for code users as well as for developers are suggested.