• 제목/요약/키워드: hydraulic-thermal behavior

검색결과 118건 처리시간 0.023초

OPR1000형 원전의 최종열제거원 상실사고 대처전략 및 운전원 조치 시간에 따른 열수력 거동 분석 (Thermal-hydraulic Analysis of Operator Action Time on Coping Strategy of LUHS Event for OPR1000)

  • 송준규
    • 한국안전학회지
    • /
    • 제35권5호
    • /
    • pp.121-127
    • /
    • 2020
  • Since the Fukushima nuclear accident in 2011, the public were concerned about the safety of Nuclear Power Plants (NPPs) in extreme natural disaster situations, such as earthquakes, flooding, heavy rain and tsunami, have been increasing around the world. Accordingly, the Stress Test was conducted in Europe, Japan, Russia, and other countries by reassessing the safety and response capabilities of NPPs in extreme natural disaster situations that exceed the design basis. The extreme natural disaster can put the NPPs in beyond-design-basis conditions such as the loss of the power system and the ultimate heat sink. The behaviors and capabilities of NPPs with losing their essential safety functions should be measured to find and supplement weak areas in hardware, procedures and coping strategies. The Loss of Ultimate Heat Sink (LUHS) accident assumes impairment of the essential service water system accompanying the failure of the component cooling water system. In such conditions, residual heat removal and cooling of safety-relevant components are not possible for a long period of time. It is therefore very important to establish coping strategies considering all available equipment to mitigate the consequence of the LUHS accident and keep the NPPs safe. In this study, thermal hydraulic behavior of the LUHS event was analyzed using RELAP5/Mod3.3 code. We also performed the sensitivity analysis to identify the effects of the operator recovery actions and operation strategy for charging pumps on the results of the LUHS accident.

EXPERIMENTAL INVESTIGATIONS RELEVANT FOR HYDROGEN AND FISSION PRODUCT ISSUES RAISED BY THE FUKUSHIMA ACCIDENT

  • GUPTA, SANJEEV
    • Nuclear Engineering and Technology
    • /
    • 제47권1호
    • /
    • pp.11-25
    • /
    • 2015
  • The accident at Japan's Fukushima Daiichi nuclear power plant in March 2011, caused by an earthquake and a subsequent tsunami, resulted in a failure of the power systems that are needed to cool the reactors at the plant. The accident progression in the absence of heat removal systems caused Units 1-3 to undergo fuel melting. Containment pressurization and hydrogen explosions ultimately resulted in the escape of radioactivity from reactor containments into the atmosphere and ocean. Problems in containment venting operation, leakage from primary containment boundary to the reactor building, improper functioning of standby gas treatment system (SGTS), unmitigated hydrogen accumulation in the reactor building were identified as some of the reasons those added-up in the severity of the accident. The Fukushima accident not only initiated worldwide demand for installation of adequate control and mitigation measures to minimize the potential source term to the environment but also advocated assessment of the existing mitigation systems performance behavior under a wide range of postulated accident scenarios. The uncertainty in estimating the released fraction of the radionuclides due to the Fukushima accident also underlined the need for comprehensive understanding of fission product behavior as a function of the thermal hydraulic conditions and the type of gaseous, aqueous, and solid materials available for interaction, e.g., gas components, decontamination paint, aerosols, and water pools. In the light of the Fukushima accident, additional experimental needs identified for hydrogen and fission product issues need to be investigated in an integrated and optimized way. Additionally, as more and more passive safety systems, such as passive autocatalytic recombiners and filtered containment venting systems are being retrofitted in current reactors and also planned for future reactors, identified hydrogen and fission product issues will need to be coupled with the operation of passive safety systems in phenomena oriented and coupled effects experiments. In the present paper, potential hydrogen and fission product issues raised by the Fukushima accident are discussed. The discussion focuses on hydrogen and fission product behavior inside nuclear power plant containments under severe accident conditions. The relevant experimental investigations conducted in the technical scale containment THAI (thermal hydraulics, hydrogen, aerosols, and iodine) test facility (9.2 m high, 3.2 m in diameter, and $60m^3$ volume) are discussed in the light of the Fukushima accident.

A Systems Engineering Approach to Multi-Physics Analysis of CEA Ejection Accident

  • Sebastian Grzegorz Dzien;Aya Diab
    • 시스템엔지니어링학술지
    • /
    • 제19권2호
    • /
    • pp.46-58
    • /
    • 2023
  • Deterministic safety analysis is a crucial part of safety assessment, particularly when it comes to demonstrating the safety of nuclear power plant designs. The traditional approach to deterministic safety analysis models is to model the nuclear core using point kinetics. However, this simplified approach does not fully reflect the real core behavior with proper moderator and fuel reactivity feedbacks during the transient. The use of Multi-Physics approach allows more precise simulation reflecting the inherent three-dimensionality (3D) of the problem by representing the detailed 3D core, with instantaneous updates of feedback mechanisms due to changes of important reactivity parameters like fuel temperature coefficient (FTC) and moderator temperature coefficient (MTC). This paper addresses a CEA ejection accident at hot full power (HFP), in which the underlying strong and un-symmetric feedback between thermal-hydraulics and reactor kinetics exist. For this purpose, a multi-physics analysis tool has been selected with the nodal kinetics code, 3DKIN, implicitly coupled to the thermal-hydraulic code, RELAP5, for real-time communication and data exchange. This coupled approach enables high fidelity three-dimensional simulation and is therefore especially relevant to reactivity initiated accident (RIA) scenarios and power distribution anomalies with strong feedback mechanisms and/or un-symmetrical characteristics as in the CEA ejection accident. The Systems Engineering approach is employed to provide guidance in developing the work in a systematic and efficient fashion.

TRACE V5 CODE APPLICATION DVI LINE BREAK LOCA USING ATLAS FACILITY

  • Veronese, Fabio;Kozlowsk, Tomasz
    • Nuclear Engineering and Technology
    • /
    • 제44권7호
    • /
    • pp.719-726
    • /
    • 2012
  • The object of this work is the validation and assessment of the TRACE v5.0 code using the scaled test ATLAS1 facility in the context of a DVI2 line break. In particular, the experiment selected models the 50%, 6-inch break of a DVI line. The same experiment was also adopted as a reference test in the ISP-503. The ISP-50 was proposed to, and accepted by, the OECD/NEA/CSNI due to its technical importance in the development of a best-estimate of safety analysis methodology for DVI line break accidents. In particular, the behavior of the two-phase flow in the upper annulus downcomer was expected to be complicated. What resulted was the need for relevant models to be implemented into safety analysis codes, in order to predict these thermal hydraulic phenomena correctly.

Development of a Simplified Fuel-Cladding Gap Conductance Model for Nuclear Feedback Calculation in 16$\times$16 FA

  • Yoo, Jong-Sung;Park, Chan-Oh;Park, Yong-Soo
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1995년도 추계학술발표회논문집(2)
    • /
    • pp.636-643
    • /
    • 1995
  • The accurate determination of the fuel-cladding gap conductance as functions of rod burnup and power level may be a key to the design and safety analysis of a reactor. The incorporation of a sophisticated gap conductance model into nuclear design code for computing thermal hydraulic feedback effect has not been implemented mainly because of computational inefficiency due to complicated behavior of gap conductance. To avoid the time-consuming iteration scheme, simplification of the gap conductance model is done for the current design model. The simplified model considers only the heat conductance contribution to the gap conductance. The simplification is made possible by direct consideration of the gas conductivity depending on the composition of constituent gases in the gap and the fuel-cladding gap size from computer simulation of representative power histories. The simplified gap conductance model is applied to the various fuel power histories and the predicted gap conductances are found to agree well with the results of the design model.

  • PDF

Containment Closure Time Following Loss of Cooling Under Shutdown Conditions of YGN Units 3&4

  • Seul, Kwang-Won;Bang, Toung-Seok;Kim, Se-Won;Kim, Hho-Jung
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1998년도 춘계학술발표회논문집(1)
    • /
    • pp.647-652
    • /
    • 1998
  • The YGN Units 3&4 plant conditions during shutdown operation were reviewed to identified the possible even scenarios following the loss of shutdown cooling. The Thermal hydraulic analyses were performed for the five cases of RCS configurations under the worst event scenario, unavailable secondary cooling and no RCS inventory makeup, using the RELAP5/MOD3.2 code to investigate the plant behavior, From the analyses results, times to boil, times to core uncovery and times to core heat up were estimated to determined the containment closure time to prevent the uncontrolled released of fission products to atmosphere, These data provide useful information to the abnormal procedure to cope with event.

  • PDF

저온수를 이용하는 일중효용/이단승온 리튬브로마이드-물 흡수식 시스템의 동적 해석 (Dynamic Analysis of Single-Effect/Double-Lift Libr-Water Absorption System using Low-Temperature Hot Water)

  • 김병주
    • 설비공학논문집
    • /
    • 제21권12호
    • /
    • pp.695-702
    • /
    • 2009
  • Dynamic behavior of Libr-water absorption system using low-temperature hot water was investigated numerically. Thermal-hydraulic model of single-effect/double-lift 100 RT chiller was developed by applying transient conservation equations of total mass, Libr mass, energy and momentum to each component. Transient variations of system properties and transport variables were analysed during start-up operation. Numerical analysis were performed to quantify the effects of bulk concentration and part-load operation on the system performance in terms of cooling capacity, coefficient of performance, and time constant of system. For an absorption chiller considered in the present study, optimum bulk concentration was found to exist, which resulted in the minimum time constant with stable cooling capacity. COP and time constant increased as the load decreased down to 40%, below which the time constant increased abruptly and COP decreased as the load decreased further.

암모니아-물 흡수식 냉각기의 동적 해석 (Dynamic Analysis of an Ammonia-Water Absorption Chiller)

  • 김병주
    • 설비공학논문집
    • /
    • 제16권10호
    • /
    • pp.990-998
    • /
    • 2004
  • Dynamic behavior of an ammonia-water absorption system was investigated numerically. Thermal-hydraulic model for a single-effect 3 RT chiller was developed by applying transient conservation equations of total mass, $NH_3$ mass, energy and momentum to each component. Transient variations of system properties and transport variables were analysed during start-up operation. Numerical analyses were performed to quantify the effects of bulk concentration and charging ratio on the system performance in terms of cooling capacity, coefficient of performance, and time constant of system. For an absorption chiller considered in the present study, optimum charging ratio and bulk concentration were to found to exist, which resulted in the maximum cooling capacity and COP. The time constant increased as the charging ratio increased, but decreased with the increase of bulk concentration.

Experimental and numerical assessment of helium bubble lift during natural circulation for passive molten salt fast reactor

  • Won Jun Choi;Jae Hyung Park;Juhyeong Lee;Jihun Im;Yunsik Cho;Yonghee Kim;Sung Joong Kim
    • Nuclear Engineering and Technology
    • /
    • 제56권3호
    • /
    • pp.1002-1012
    • /
    • 2024
  • To remove insoluble fission products, which could possibly cause reactor instability and significantly reduce heat transfer efficiency from primary system of molten salt reactor, a helium bubbling method is employed into a passive molten salt fast reactor. In this regard, two-phase flow behavior of molten salt and helium bubbles was investigated experimentally because the helium bubbles highly affect the circulation performance of working fluid owing to an additional drag force. As the helium flow rate is controlled, the change of key thermal-hydraulic parameters was analyzed through a two-phase experiment. Simultaneously, to assess the applicability of numerical model for the analysis of two-phase flow behavior, the numerical calculation was performed using the OpenFOAM 9.0 code. The accuracy of the numerical analysis code was evaluated by comparing it with the experimental data. Generally, numerical results showed a good agreement with the experiment. However, at the high helium injection rates, the prediction capability for void fraction of helium bubbles was relatively low. This study suggests that the multiphaseEulerFoam solver in OpenFOAM code is effective for predicting the helium bubbling but there exists a room for further improvement by incorporating the appropriate drag flux model and the population balance equation.

외력과 열하중을 동시에 받는 판구조의 열-기계적 특성 (Thermo-Mechanical Characteristics of a Plate Structure under Mechanical and Thermal Loading)

  • 김종환;이기범;황철규
    • 한국항공우주학회지
    • /
    • 제34권11호
    • /
    • pp.26-34
    • /
    • 2006
  • 본 연구에서는 외력과 열을 동시에 받는 판구조에 대하여 구조적 강도를 평가하기 위하여 열응력 해석 및 열기계적 실험을 수행하였다. 초음속 비행체의 날개 유사 모델인 판구조에 대한 열 및 외력 환경구현을 위하여 석영램프를 이용한 복사가열기와 하중부가 시스템을 사용하였으며, 소성을 가미한 탄소성 유한요소 해석을 병행하여 열기계적 거동을 파악하였다. 시험은 외력 유지 상태에서 일정 온도 유지환경과 10 ℃/sec의 가열률 환경하에서 이루어졌다. 해석 및 실험에 의한 결과들을 이용하여 가열환경에 따른 구조물의 거동 특성을 파악하였으며, 상온에서의 구조강도 결과와 비교 고찰하였다. 본 연구를 통하여 초음속 비행체와 같이 외력과 열 환경을 경험하는 구조물에 대한 실험 및 해석적 방법을 제시하였고, 획득된 자료들은 비행체 내열 구조 설계시 열적 강도 판단의 참고자료로 활용될 수 있을 것이다.