• Title/Summary/Keyword: hydraulic volume

Search Result 434, Processing Time 0.022 seconds

Effective Smoothness of Surge Pressure Generated in the Return Line of Active Suspension Hydraulic System for Vehicle (자동차 능동 현가장치 유압계 회귀 관로에서의 서지 압력 저감법)

  • 정용길;이일영;윤영환
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.5
    • /
    • pp.111-118
    • /
    • 1998
  • Surge pressure problem at the oil return line of the hydraulic circuit of an active suspension system for passenger cars was investigated by experiments and numerical analyses. In the numerical analyses, the method of characteristics was used for simulating unsteady flow in the hydraulic system and gas discrete model was adopted for estimating gas volume variation in separated liquid column. In the experiments and analyses, effects of the physical parameters of the accumlator on smoothing surge pressure was elucidated.

  • PDF

Development of Large Diameter Sampler and Analysis of Sampling Soil Character (대구경 샘플러의 개발 및 채취시료의 성질 분석)

  • 김영진;홍성완;김현민
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.353-360
    • /
    • 2000
  • We developed large diameter sampler (we called KICT type large diameter sampler) to obtain undisturbed clay and sand samples. In-situ test carried out in the In-Chon international airport and Kim-Hae. Also we obtained undisturbed sample with a hydraulic piston sampler in the nearly site and carried out unconfined compression test, consolidation test and triaxial test. The result, unconfined compression strength, secant modules, preconsolidation pressure and undrained shear strength of samples to obtain KICT type large diameter sampler are larger than that of samples to obtain hydraulic piston sampler. But failure strains and volume changes at the consolidation of samples to obtain KICT type large diameter sampler are smaller than that of samples to obtain hydraulic piston sampler

  • PDF

Control Characteristics Improvement of Single Rod Hydraulic Cylinder Subjected to Varying Load (가변하중을 받는 유압실린더의 제어특성개선)

  • Yum, Man-Oh
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.2 no.4
    • /
    • pp.46-52
    • /
    • 2003
  • For position control of electro-hydraulic servo system, single rod cylinders and double rod cylinders are used. Single rod cylinders have simple structure for manufacturing but different volume ratio of two sides induce to non-linearity in process of then mathematical modeling. So only with conventional PID control method it is difficult to control single rod cylinders precisely. For mole precise position control of single rod cylinders, a controller which is inserted a velocity feedback PID controller and MRAC controller are proposed. With experiment control performances of three control methods are compared. In case of experiment, for external varying load to the system, a hydraulic cylinder and a pressure control valve are used. In conclusion a MRAC is considered a suitable control method for external varying load.

  • PDF

Pressure Modulation Control of Powershift Shuttle Clutch of Tractor (트랙터용 파워시프트 전.후진 클러치의 압력 모듈레이션 제어)

  • Cho, Jae-Mun;Huh, Jun-Young;Chong, Byung-Hak;Kim, Kyeong-Uk
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1572-1577
    • /
    • 2003
  • The powershift transmission have the advantage of easier operation and higher efficiency by using the hydraulic clutch and mechanical power transfer system. It is important to control the engaging pressure and time. The hydraulic control system is used for these controls of the modulator valve, the accumulator, the sump valve and etc. This study have made a simulator for verifying the pressure characteristic of the shuttle powershift transmission and developed the computer simulation model of the hydraulic components and system by using 'AMESim'. As a result, the design parameters which have an effect on the pressure modulation are verified to the spring stiffness of the modulator valve and the volume of the accumulator.

  • PDF

A Characteristics of Transient fluid flow in a Hydraulic circular pipe (유압(油壓) 관로(管路) 내(內)에서 유체(流體) 유동(流動)의 과도응답특성(過渡應答特性)에 관(關)한 이론적연구(理論的硏究))

  • Kim, H.J.;Jung, J.C.;Yoo, Y.T.
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.829-834
    • /
    • 2000
  • This paper is primarily directed toward analyzing the transient response characteristics in hydraulic pipe lines. The exact solution to the transient response characteristics was obtained by using the complicated transfer function derived by Iberall. The discrepancy with the exact and approximate is small, so the approximate solution is adopted to the theoretical one. An equation was derived which describes the pressure times relationship Hat occurs at the end of volume terminated transmission line following a sudden pressure change at its inputs. As a result, It is found that the density has relationship about the Wave Propagation is very useful in analyzing the transient response characteristics of hydraulic pipe lines. The velocity of Pressure wave Propagation decreases as the density of fluid increased.

  • PDF

Cavitation Inception in Oil Hydraulic Pipeline (유압관로에서의 캐비테이션 초생)

  • 정용길
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.23 no.3
    • /
    • pp.127-130
    • /
    • 1987
  • The Cavitation inception in oil hydraulic pipeline was investigated experimentally and numerically. In the experiment, negative pressures below -1 MPa (absolute pressure) were measured, associated with the transient flows in oil hydraulic pipeline. These experimental results show that the common hydraulic oil in the experimental pipeline withstands large tensions. The growth of a spherical bubble in a infinite volume of viscous compressible fluid due to a stepwise pressure drop was investigated to obtain the critical bubble radius. The calculated value of the critical bubble radius corresponding to the negative pressure measured in the experiment is so small that the premised condition about the bubble shape in the analysis is unsatisfactory. The physical significance of this calculated result implies the fact that there hardly exist free bubbles which can act as cavitation nuclei in the experimental pipeline.

  • PDF

Hydraulic conductivity estimation by considering the existence of piles: A case study

  • Yuan, Yao;Xu, Ye-Shuang;Shen, Jack S.;Wang, Bruce Zhi-Feng
    • Geomechanics and Engineering
    • /
    • v.14 no.5
    • /
    • pp.467-477
    • /
    • 2018
  • Estimation of hydraulic parameters is a critical step during design of foundation dewatering works. When many piles are installed in an aquifer, estimation of the hydraulic conductivity should consider the blocking of groundwater seepage by the piles. Based on field observations during a dewatering project in Shanghai, hydraulic conductivities are back-calculated using a numerical model considering the actual position of each pile. However, it is difficult to apply the aforementioned model directly in field due to requirement to input each pile geometry into the model. To develop a simple numerical model and find the optimal hydraulic conductivity, three scenarios are examined, in which the soil mass containing the piles is considered to be a uniform porous media. In these three scenarios, different sub-regions with different hydraulic conductivities, based on either automatic inverted calculation, or on effective medium theory (EMT), are established. The results indicate that the error, in the case which determines the hydraulic conductivity based on EMT, is less than that determined in the automatic inversion case. With the application of EMT, only the hydraulic conductivity of the soil outside the pit should be inverted. The soil inside the pit with its piles is divided into sub-regions with different hydraulic conductivities, and the hydraulic conductivity is calculated according to the volume ratio of the piles. Thus, the use of EMT in numerical modelling makes it easier to consider the effect of piles installed in an aquifer.

Influence of spatial variability on unsaturated hydraulic properties

  • Tan, Xiaohui;Fei, Suozhu;Shen, Mengfen;Hou, Xiaoliang;Ma, Haichun
    • Geomechanics and Engineering
    • /
    • v.23 no.5
    • /
    • pp.419-429
    • /
    • 2020
  • To investigate the effect of spatial variability on hydraulic properties of unsaturated soils, a numerical model is set up which can simulate seepage process in an unsaturated heterogeneous soil. The unsaturated heterogeneous soil is composed of matrix sand embedded with a small proportion of clay for simulating the heterogeneity. Soil-water characteristic curve and unsaturated hydraulic conductivity curve of the unsaturated soil are expressed by Van Genuchten model. Hydraulic parameters of the matrix sand are considered as random fields. Different autocorrelation lengths (ACLs) of hydraulic parameter of the matrix sand and different proportions of clay are assumed to investigate the influence of spatial variability on the equivalent hydraulic properties of the heterogeneous soil. Four model sizes are used in the numerical experiments to investigate the influence of scale effects and to determine the sizes of representative volume element (RVE) in the numerical simulations. Through a number of Monte Carlo simulations of unsaturated seepage analysis, the means and the coefficients of variations (COVs) of the equivalent hydraulic parameters of the heterogeneous soil are calculated. Simulations show that the ACL and model size has little influence on the means of the equivalent hydraulic parameters, but they have a large influence on the COVs of the equivalent hydraulic parameters. The size of an RVE is mainly affected by the ACL and the proportion of heterogeneity. The influence of spatial variability on the hydraulic parameters of the heterogeneous unsaturated soil can be used as a guidance for geotechnical reliability analysis and design related to unsaturated soils.

Swelling and hydraulic characteristics of two grade bentonites under varying conditions for low-level radioactive waste repository design

  • Chih-Chung Chung;Guo-Liang Ren;I-Ting Chen;Che-Ju, Cuo;Hao-Chun Chang
    • Nuclear Engineering and Technology
    • /
    • v.56 no.4
    • /
    • pp.1385-1397
    • /
    • 2024
  • Bentonite is a recommended material for the multiple barriers in the final disposal of low-level radioactive waste (LLW) to prevent groundwater intrusion and nuclear species migration. However, after drying-wetting cycling during the repository construction stage and ion exchange with the concrete barrier in the long-term repository, the bentonite mechanical behaviors, including swelling capacity and hydraulic conductivity, would be further influenced by the groundwater intrusion, resulting in radioactive leakage. To comprehensively examine the factors on the mechanical characteristics of bentonite, this study presented scenarios involving MX-80 and KV-1 bentonites subjected to drying-wetting cycling and accelerated ion migration. The experiments subsequently measured free swelling, swelling pressure, and hydraulic conductivity of bentonites with intrusions of seawater, high pH, and low pH solutions. The results indicated that the solutions caused a reduction in swelling volume and pressure, and an increase in hydraulic conductivity. Specifically, the swelling capability of bentonite with drying-wetting cycling in the seawater decreased significantly by 60%, while hydraulic conductivity increased by more than three times. Therefore, the study suggested minimizing drying-wetting cycling and preventing seawater intrusion, ensuring a long service life of the multiple barriers in the LLW repository.

Clogging theory-based real time grouting management system applicable in soil conditions

  • Kwon, Young-Sam;Kim, Jinchun;Lee, In-Mo
    • Geomechanics and Engineering
    • /
    • v.16 no.2
    • /
    • pp.159-168
    • /
    • 2018
  • In this study, a real-time grouting management system based on the clogging theory was established to manage injection procedure in real time. This system is capable of estimating hydraulic permeability with the passage of time as the grout permeates through the ground, and therefore, capable of estimating real time injection distance and flow rate. By adopting the Controlled Injection Pressure (CoIP) model, it was feasible to predict the grout permeation status with the elapse of time by consecutively updating the hydraulic gradient and flow rate estimated from a clogging-induced alteration of pore volume. Moreover, a method to estimate the volume of the fractured gap according to the reduction in injection pressure was proposed. The validity of the proposed system was successfully established by comparing the estimated values with the measured field data.