• Title/Summary/Keyword: hydraulic pumping system

Search Result 81, Processing Time 0.023 seconds

Pulsation Dampener for Diaphragm Metering Pump (다이아프램 정량펌프의 맥동감쇄 장치)

  • 윤승원
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1143-1147
    • /
    • 2004
  • A mechanical type pulsation dampener for the diaphragm metering pump has been developed. The pulsation pressure is an inevitable phenomenon for the positive displacement pump such as cam operated or solenoid operated metering pump. The pulsation pressure of the metering pump could be the noise source and would be harmful for the piping system which delivers hydraulic fluid. Developed pulsation dampener consists of three coil springs which have different spring constant and height each other. Depending on pressure magnitude of the piping system, total hydraulic pressure on damping diaphragm which compresses coil springs will be varied. Force equilibrium of the pulsation dampener will be set by manual by adjusting the compressed coil spring height. During the discharge stroke, pulsation dampener stores potential energy that is released as the pumping diaphragm back to an initial position during the suction stroke.

  • PDF

Operational Improvement of Small Urban Storm Water Pumping Station (1) - Simulation of Flood Hydrograph using GIS-based Hydrologic Model (도시 소유역 배수펌프장 운영개선 방안 연구 (1) - GIS 기반 수문모형에 의한 홍수유출수문곡선의 재현)

  • Gil, Kyung-Ik;Han, Jong-Ok;Kim, Goo-Hyun
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.6
    • /
    • pp.682-686
    • /
    • 2005
  • Recently some urban areas have been flooded due to heavy storm rainfalls. Though major causes of these floodings may be attributed to localized heavy rainfalls, other factors are related to urban flooding including deficiency of storm sewer network capacity, change of surface runoff due to covered open channels, and operational problems of storm drainage pump stations. In this study, hydrologic and hydraulic analysis of Sutak basin in Guri city were carried out to evaluate flooding problems occurred during the heavy storm in July, 2001. ArcView, a world most widely used GIS tool, was used to extract required data for the hydrologic analysis including basin characteristics data, concentration times, channel routing data, land use data, soil distribution data and SCS runoff curve number generation from digital maps. HEC-HMS, a GIS-based runoff simulation model, was successfully used to simulate the flood inflow hydrograph to Sutak pumping station.

Performance Optimization of High Specific Speed Pump-Turbines by Means of Numerical Flow Simulation (CFD) and Model Testing

  • Kerschberger, Peter;Gehrer, Arno
    • International Journal of Fluid Machinery and Systems
    • /
    • v.3 no.4
    • /
    • pp.352-359
    • /
    • 2010
  • In recent years, the market has shown increasing interest in pump-turbines. The prompt availability of pumped storage plants and the benefits to the power system achieved by peak lopping, providing reserve capacity, and rapid response in frequency control are providing a growing advantage. In this context, there is a need to develop pumpturbines that can reliably withstand dynamic operation modes, fast changes of discharge rate by adjusting the variable diffuser vanes, as well as fast changes from pumping to turbine operation. In the first part of the present study, various flow patterns linked to operation of a pump-turbine system are discussed. In this context, pump and turbine modes are presented separately and different load cases are shown in each operating mode. In order to create modern, competitive pump-turbine designs, this study further explains what design challenges should be considered in defining the geometry of a pump-turbine impeller. The second part of the paper describes an innovative, staggered approach to impeller development, applied to a low head pump-turbine project. The first level of the process consists of optimization strategies based on evolutionary algorithms together with 3D in-viscid flow analysis. In the next stage, the hydraulic behavior of both pump mode and turbine mode is evaluated by solving the full 3D Navier-Stokes equations in combination with a robust turbulence model. Finally, the progress in hydraulic design is demonstrated by model test results that show a significant improvement in hydraulic performance compared to an existing reference design.

Simulation of Groundwater Flow and Sensitivity Analysis for a Riverbank Filtration Site in Koryeong, Korea (경북 고령군 강변여과 취수 지역의 지하수 유동 모사 및 민감도 분석)

  • Won, Lee-Jung;Koo, Min-Ho;Kim, Hyoung-Su
    • Journal of Soil and Groundwater Environment
    • /
    • v.11 no.2
    • /
    • pp.45-55
    • /
    • 2006
  • A 2-D unconfined flow model is developed to analyze annual variations of groundwater level and bank filtration rate (BFR) for an experimental riverbank filtration site in Koryeong, Korea. Two types of boundary conditions are examined for the river boundary in the conceptual model: the static head condition that uses the average water level of the river and the dynamic cyclic condition that incorporates annual fluctuation of water level. Simulations show that the estimated BFR ranges $74.3{\sim}87.0%$ annually with the mean of 82.4% for the static head boundary condition and $52.7{\sim}98.1%$ with the mean of 78.5% for the dynamic cyclic condition. The results illustrate that the dynamic cyclic condition should be used for accurate evaluation of BFR. Simulations also show that increase of the distance between the river and the pumping wells slightly decreases BFR up to 4%, and thereby indicate that it is not a critical factor to be accounted for in designing BFR of the bank filtration system. A sensitivity analysis is performed to examine the effects of model parameters such as hydraulic conductivity and specific yield of the aquifer, recharge rate, and pumping rate. The results demonstrate that the average groundwater level and BFR are most sensitive to both the pumping rate and the recharge rate, while the water level of the pumping wells is sensitive to the hydraulic conductivity and the pumping rate.

Potential for Development of Bank Filtrate in the Nakdong River Basin (낙동강 유역의 강변여과수 개발 가능성)

  • 전흥배;김상일
    • Journal of the Korean Professional Engineers Association
    • /
    • v.30 no.4
    • /
    • pp.99-116
    • /
    • 1997
  • In order to obtain safe drinking water, free from surface contamination, a study to determine the potential for developing a bank-filtrate system in the Iryong and Yongsan, Nakdong River Basin, Korea was conducted. The main type of aquifer In the study area is alluvial, consisting mostly of sand and gravel. The hydraulic conductivity(k) of the Iryong and Yongsan test areas were 8.63${\times}$10$^-2$cm/s and 9.90${\times}$10$^-2$cm/s, respectively, indicating that these areas are satisfactory for bank filtrate production. Pilot plants(IRPL and YSPL) were set up In Iryong and Yongsan to monitor the change in the quality of bank-filtered water and to determine the effect pumping had on the surrounding hydrogeologic system. The pilot plants operated continuously for about two months and the data obtained were used to validate the groundwater flow model. Computer simulations were conducted to predict the effects of producing bank filtrate using MODFLOW. MODPATH was also linked with the flow model to analyze particle tracking. According to the results of the model simulations and the hydrogeologlc study, long-term pumping, the minimization of drawdown and the availability of uncontaminated sell and groundwater conditions for the catchment area were all Important factors for successful bank-titrate system development.

  • PDF

Optimal Cost Design of Pipe Network Systems Using Genetic Algorithms (遺傳子 알고리즘을 이용한 管網시스템의 最適費用 設計)

  • Park, Yeong-Su;Kim, Jong-U;Kim, Tae-Gyun;Kim, Jung-Hun
    • Journal of Korea Water Resources Association
    • /
    • v.32 no.1
    • /
    • pp.71-81
    • /
    • 1999
  • The objective of this study is to develop a model which can design an optimal pipe network system of least cost while satisfying all the design constraints including hydraulic constraints using a genetic algorithm technique. Hydraulic constraints interfaced with the simulation program(KYPIPE) checked feasible solution region. Genetic algorithm(GA) technique is a relatively new optimization technique. The GA is known as a very powerful search and optimization technique especially when solving nonlinear programming problems. The model developed in this study selects optimal pipe diameters in the form of commercial discrete sizes using the pipe diameters and the pumping powers as decision variables. The model not only determines the optimal diameters and pumping powers of pipe network system but also satisfies the discharge and pressure requirements at demanding nodes. The model has been applied to an imaginary and an existing pipe network systems. One system is adopted from journal papers which has been used as an example network by many other researchers. Comparison of the results shows compatibility of the model developed in this study. The model is also applied to a system in Goyang city in order to check the model applicability to finding of optimal pumping powers. It has been found that the developed model can be successfully applied to optimal design of pipe network systems in a relatively simple manner.

  • PDF

A Study on Groundwater Flow Modeling in the Fluvial Aquifer Adjacent to the Nakdong River, Book-Myeon Area, Changwon City (창원시 북면 낙동강 주변 하성퇴적층의 지하수유동 모델링 연구)

  • Hamm Se-Yeong;Cheong Jae-Yeol;Kim Hyoung-Su;Hahn Jeong-Sang;Ryu Su-Hee
    • Economic and Environmental Geology
    • /
    • v.37 no.5
    • /
    • pp.499-508
    • /
    • 2004
  • Changwon City first constructed riverbank filtration plants in Book-Myeon and Daesan-Myeon in Korea in the year 2001. This study evaluated hydrogeological characteristics and groundwater flow simulation between the Nakdong River and the fluvial aquifers adjacent to the river in Book-Myeon, Changwon City. The groundwater simulation calculated the influx rate from the Nakdong River and the fluvial aquifers to pumping wells through the riverbank filtration system. The groundwater flow model utilized drilling, grain size analysis, pumping test, groundwater level measurements, river water discharge and rainfall data. Hydraulic heads calculated by the steady-state model closely matched measured heads in pumping and observation wells. According to the transient flow model, using a total pumping amount of 14,000 $m^3$/day, the flux into the pumping wells from the Nakdong River accounts for 8,390 $m^3$/day (60%), 590 $m^3$/day (4%) is from the aquifer in the rectilinea. direction to the Nakdong River, and 5,020 $m^3$/day (36%) is from the aquifer in the parallel direction to the Nakdong River. The particle tracking analysis shows that a particle from the Nakdong River moves toward the pumping wells at a rate of about 1.85 m/day and a particle from the aquifer moves toward the pumping wells at a rate of about 0.75 m/day. This study contributes to surface water/groundwater management modeling, and helps in understanding, how seasonal change affects pumping rates, water quality, and natural recharge.

Well Loss in Fractured Rock Formation with Radial Flow during Pumping Test (양수시험시 방사상흐름을 보이는 균열암반 대수층에서의 우물손실)

  • 이철우;이대하;정지곤;김구영;김용제
    • Journal of Soil and Groundwater Environment
    • /
    • v.7 no.4
    • /
    • pp.17-23
    • /
    • 2002
  • Pumping tests were carried out from seven wells in fractured rocks. The time-drawdown data were obtained from pumping wells and corrected for the elapsed time of step drawdown test using Cooper-Jacob's method. A statistical method. the least square of error, was used to yield the coefficient of aquifer losses, the coefficient of well losses, and the power which indicates the severity of the turbulence. The values of the power range from 1.65 to 6.48. The well losses result mainly from turbulent flow caused by radial flow nearby pumping wells. The turbulent flow depends on Reynolds number. Since the hydraulic characteristics of fractured rocks control the fluid velocity, the value of the power is an important factor to understand the aquifer system of fractured rocks.

Analysis of Stream Depletion Rate by Groundwater Abstraction in Leaky Aquifer (누수대수층 지하수 양수에 따른 하천수 감소율 거동 분석)

  • Lee, Jeongwoo;Chung, Il-Moon;Kim, Nam Won
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.6
    • /
    • pp.1001-1008
    • /
    • 2017
  • This study was to evaluate the stream depletion rate from groundwater pumping with varying stream-well distance, aquifer transmissivity, storage coefficient, leakage coefficient, streambed hydraulic conductance using the Zlotnik and Tartakovsky analytical solution which considers a two-layer leaky aquifer-stream-well system. For the hydraulic conditions applied in this study, the streambed hydraulic conductance and the aquitard leakage coefficient were assessed to have a dominant influence on the stream depletion rate. In order to evaluate the applicability of Zlotnik and Tartakovsky analytical solution ignoring the change in the drawdown in the lower aquifer and applying the fixed head boundary condition, the solution was compared with Hunt analytical solution derived from the more practical conditions simultaneously taking into account the drawdown changes in the upper and lower aquifers. As a result, the Zlotnik and Tartakovsky analytical solution is suitable for predicting short-term effects of less than one year in the pumping period, and when the stream depletion factor (SDF) is greater than 2,500 days, or when the product of the leakage coefficient and the stream-well distance is less than 10 cm/s.

Development of Optimal Decision-Making System for Rehabilitation of Water Distribution Systems Divided by small Division (상수관망의 구역별 최적개량 의사결정 시스템의 개발)

  • Baek Chun-Woo;Kim Seok-Woo;Kim Eung-Seok;Kim Joong-Hoon;Park Moo-Jong
    • Journal of Korea Water Resources Association
    • /
    • v.39 no.6 s.167
    • /
    • pp.545-552
    • /
    • 2006
  • The purpose of this study is to develop an optimal, long-term planning model for improvement of water distribution networks. The water distribution system is divided into sub-zones and the decision of improvement plan is made for each sub-zone. Costs for replacement, rehabilitation and repair, benefits including reduced pumping and leakage costs, and hydraulic reliability are considered to make optimal decision for improvement planning of water network. Harmony search algorithm is applied to optimize the system and hydraulic analysis model EPANET is interfaced with the optimal decision model to check the hydraulic reliability, The developed model is applied to actual water distribution system in Daegu-city, South Korea. The new model which use durability, conveyance and cost as a decision variable is different from existing methods which use only burying period and pipe type and can be used as optimal decision making system for water distribution network.