• 제목/요약/키워드: hydraulic piston pump

검색결과 128건 처리시간 0.025초

레이디얼 피스톤 펌프의 효율 특성 연구 (A Characteristic Study of Efficiency in Radial Piston Pump)

  • 장윤석;천세민;임윤철
    • Tribology and Lubricants
    • /
    • 제16권4호
    • /
    • pp.259-265
    • /
    • 2000
  • Pump which is the fundamental device in the hydraulic system affects on overall system performance to a great deal. Such problems as leakage and solid friction loss become important in field applications, especially for the case of operation under high pressure and at high speed. So the research on this kind of subjects is necessary to improve the performance of hydraulic devices. A high pressure radial piston pump is analyzed here, which has a stationary cylinder block. It pumps hydraulic fluid by letting camring push a piston in a cylinder. Fluid leaks between the piston and cylinder so that it deteriorates the pump efficiency. Furthermore, the piston happens to touch the cylinder wall to increase the friction loss and wear. In this research, by means of FDA, volumetric, mechanical and overall efficiencies are observed by varying several design parameters and operation conditions. Design values or their trends are presented to improve these effciencies.

탠덤 펌프의 토크효율 시험방법에 관한 연구 (A Study on Torque Efficiency Test Method of Tandem Pump)

  • 유진산;함영복;김성동
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 추계학술대회 논문집
    • /
    • pp.282-285
    • /
    • 1997
  • The torque efficiency of oil hydraulic pump is an important factor for it's performance characteristics. A study on the performance test method of oil hydraulic pump is based on test standard, but there is to be desired an study for double or tandem type oil hydraulic piston pump. So in this study present a test method on the tandem pump for torque efficiency and analysis method of the results.

  • PDF

사판식 액셜피스톤 펌프-레귤레이터계의 선형화해석에 의한 유압제어특성 고찰 (A Study on Hydraulic Control Characteristics of a Swashplate Type Axial Piston Pump-Regulator System by Linearization Analysis)

  • 조승호;김원수
    • 대한기계학회논문집A
    • /
    • 제24권10호
    • /
    • pp.2535-2542
    • /
    • 2000
  • The regulator system has been modeled and combined to a swashplate type axial piston pump. Linear approximation has been performed for nonlinear coefficient terms of an axial piston pump-regulator model without significantly affecting accuracy. Based on the mathematical model of an axial piston pump-regulator system, a couple of characteristic curves of negative flow control and horsepower control are drawn, which show a good correlation with those of experimental results. So the simplified axial piston pump-regulator model in this paper is expected to be utilized not only for the design and analysis of hydraulic circuit of excavator but also for prevention of engine overload.

사판식 피스톤 펌프-관로계에서의 맥동류 해석 (Analysis of Pulsating Flow in a Swash Plate Type Piston Pump and Transmission Line)

  • 최영학;이일영
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2000년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.45-49
    • /
    • 2000
  • Vibration and noise problem in a hydraulic system became one of very important factors in evaluating the performance of a hydraulic system. It is known that vibration and noise in a hydraulic system is directly related to flow pulsation in the hydraulic pump in the system. This study investigated a modeling and simulation technique for pulsating flow in a swash plate type axial piston pump. The key design factors of the pump related to flow pulsation phenomenon of the pump are the physical parameters for notches on the valve plate of the pump. By the numerical analysis, effects of the physical parameters of the notch on the flow pulsation was elucidated.

  • PDF

사축식 유압 피스톤 펌프의 밸브 플레이트 형상과 하우징 진동간 상관관계에 대한 해석 (Analysis on the Relationships Between the Valve Plate Geometry and the Housing Vibration of a Bent-Axis Type Hydraulic Piston Pump)

  • 김성훈;홍예선
    • 대한기계학회논문집A
    • /
    • 제30권1호
    • /
    • pp.52-59
    • /
    • 2006
  • The vibration of hydraulic piston pumps is induced by the periodically changing cylinder chamber pressure whose waveform is significantly influenced by valve plate geometry. In this study, the force input to the housing of a bent-axis type hydraulic piston pump was computed by deriving the dynamic equations of its piston and cylinder barrel. The vibration intensity of the pump was represented by the acceleration amplitude of its housing. In order to comparatively evaluate the influence of valve plate geometry on the vibration of pump housing, two different types of valve plate were tested. The computed results showed good agreement with the experimental data, indicating that the vibration acceleration of pump housing is rather dependent on the variation amplitude of balance coefficient than the changing slope or overshoot of cylinder chamber pressure. It was also confirmed that the design effect of valve plates could be directly examined out by monitoring the vibration acceleration of pump housing.

다물체 동역학과 다중물리 연동 시뮬레이션 환경에서 정/역 가변용량형 사판식 피스톤 펌프의 모델링 기법 (Modeling Technique for a Positive and Negative Variable Displacement Swash Plate Hydraulic Piston Pump in a Multibody Dynamics and Multi-Physics Co-Simulation Environment)

  • 장진현;정헌술
    • 드라이브 ㆍ 컨트롤
    • /
    • 제16권1호
    • /
    • pp.36-44
    • /
    • 2019
  • Variable displacement swash plate piston pump analysis requires electric, hydraulics and dynamics which are similar to the one's incorporated in the complex fluid power and mechanical systems. The main variable capacity for the swash plate piston pumps, hydraulics or simple kinematic (swash plate degree, piston displacement) models are analyzed using AMESim, a multi-physics analysis program. AMESim is a multi-physics hydraulic analysis program that is considered good for the environment but not appropriate for environmental analysis for multibody dynamics. In this study, the analytical model of the swash plate type hydraulic piston pump variable capacity is modeled by combining the hydraulic part and the dynamic part through co-simulation of multibody dynamics program (Virtual.lab Motion) and multi-physics analysis (AMESim). This paper describes the whole modeling analysis method on the mechanical analysis of the multi-body dynamics program and how the hydraulic analysis in multi-physics analysis program works. This paper also presents a methodology for analyzing complex fluid power systems.

사판식 피스톤 펌프 흡입구의 유동 특성에 관한 연구 (A Study on the Flow Characteristics of a Swash-Plate Piston-Pump Inlet)

  • 이정실;전차수
    • 한국기계가공학회지
    • /
    • 제20권10호
    • /
    • pp.56-62
    • /
    • 2021
  • In this study, a cavitation occurrence in a piston-pump inlet was investigated by simulating the pressure distribution, according to the inlet shape of a variable-displacement swash-plate piston pump that supplies high-pressure oil to control the hydraulic system of a marine engine. Two types of pump inlets with different shapes were cast into impression models, and the models were reverse-engineered by 3D scanning. Then, the hydraulic-pressure distribution was analyzed through finite-element analysis. The results of the analysis confirmed that cavitation occurs more easily in the inlet with a steeper slope during pump operation because the inlet pressure on the valve plate is lower than that of the other pump with a gentler inlet slope.

유압 피스톤 펌프의 피스톤과 실린더 사이의 윤활해석 (제1보:피스톤 형상에 의한 영향) (A Lubrication Analysis between the Piston and Cylinder in Hydraulic Piston Pumps Part 1: The effect of piston shape)

  • 박태조;전병수
    • Tribology and Lubricants
    • /
    • 제14권1호
    • /
    • pp.64-69
    • /
    • 1998
  • A numerical analysis is carried out to study the effect of piston shape on the lubrication characteristics between the cylinder and piston in hydraulic piston pumps. The results showed that the shape of piston affect significantly the pressure distribution in the clearance, the lateral force acting on the piston and leakage flow through the clearance. Partially tapered piston is more effective than any other piston shapes because it reduces the possibility of hydraulic locking and improves the volumetric efficiency of the pump.

Analysis on the Friction Losses of a Bent-Axis Type Hydraulic Piston Pump

  • Hong, Yeh-Sun;Doh, Yoon-Ho
    • Journal of Mechanical Science and Technology
    • /
    • 제18권9호
    • /
    • pp.1668-1679
    • /
    • 2004
  • The design of an axial piston pump for electro-hydrostatic transmission systems requires accurate information where and how much the internal friction and flow losses are produced. This study is particularly focused on the friction losses of a bent-axis type hydraulic piston pump, aiming at finding out which design factors influence its torque efficiency most significantly. To this end, the friction coefficients of the pump parts such as piston heads, spherical joints, shaft bearings, and valve plate were experimentally identified by a specially constructed tribometer. Applying the experimental data to the equations of motion for pistons as well as to the theoretical friction models for the pump parts, the friction torques produced by them were computed. The accuracy of the computed results was confirmed by the comparison with the practical input torque of the pump. In this paper, it is shown that the viscous friction forces on the valve plate and input shaft bearing are the primary source of the friction losses of the bent-axis type pump, while the friction forces and moments on the piston are of little significance.

유압 피스톤 펌프의 수명 예측 연구 (A Study on Life Prediction of Hydraulic Piston Pump)

  • 김경수;이지환;강명철;유범상
    • 한국군사과학기술학회지
    • /
    • 제21권5호
    • /
    • pp.607-613
    • /
    • 2018
  • Hydraulic systems are widely used in the field of defense, construction machinery, agricultural machinery, and general industries, due to various advantages such as quick response speed and precision control. The defense equipments such as light rescue vehicle is operated in very harsh environments, so hydraulic components used in defense equipment are required to have very high reliability. In particular, hydraulic piston pump is very important component in a hydraulic systems, so life prediction of pump is essential. Therefore, in this study, we analyze the potential failure and the main failure mode of the hydraulic piston pump for the light rescue vehicle through the FMEA analysis, and predict the life of the pump by the accelerated life test considering the usage conditions.