• Title/Summary/Keyword: hydraulic head

Search Result 377, Processing Time 0.031 seconds

Influence of Side Leakage Loss on the Performance of a Micro Positive Displacement Hydraulic Turbine (마이크로 용적형 수차의 측면누설손실이 성능에 미치는 영향)

  • Choi, Young-Do
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.2
    • /
    • pp.291-295
    • /
    • 2006
  • Recently, greenhouse effect by $CO_2$ gas emitted by use of fossil fuel causes earth environmental problem. As a countermeasure of the global warming. micro hydropower under 100kW becomes the focus of attention for its clean and renewable energy sources. Newly developed micro positive displacement hydraulic turbine shows high efficiency and good applicability for the micro hydropoewer. The purpose of this study is to clarify the influence of leakage loss and effective head on the performance of the positive displacement hydraulic turbine for the further improvement of the turbine performance. The results show that the turbine. with a smaller side clearance. has much higher efficiency than that with bigger side clearance and it can sustain the high efficiency under the wider range of operation conditions. The turbine torque is proportional to the effective head and independent of the flow rate. The leakage is also dependent on the effective head but nearly independent of the flow rate.

Effect of hydraulic lining-ground interaction on subsea tunnels (라이닝-지반 수리상호작용이 해저터널에 미치는 영향)

  • Shin, Jong-Ho;Park, Dong-In;Joo, Eun-Jung
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.10 no.1
    • /
    • pp.49-57
    • /
    • 2008
  • One of the most important design concerns for undersea tunnels is to establish design water load and flow rate. These are greatly dependent on the hydraulic factors such as water head, cover depth, hydraulic boundary conditions. In this paper, the influence of the hydraulic design factors on the ground loading and the inflow rate was investigated using the coupled finite element method. A horse shoe-shaped tunnel constructed 30 m below sea bottom was adopted to evaluate the water head effect considering various water depth for varying hydraulic conditions and relative permeability between lining and ground. The effect of cover depth was analysed for varying cover depth with the water depth of 60 m. The results were considered in terms of pore water pressure, ground loading and flow rate. Ground loading increases with an increase in water head and cover depth without depending on hydraulic boundary conditions. This points out that in leaking tunnels an increase in water depth increases seepage force which consequently increases ground loading. Furthermore, it is identified that an increase in water head and cover depth increases the rate of inflow and a decrease in the permeability ratio reduces the rate of inflow considerably.

  • PDF

Analysis of the Hydraulic Head Affected by Stage of Tidal Rivers (감조구역에서 지하수 수두의 거동 해석)

  • 김민환;이재형
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.2 no.1
    • /
    • pp.30-37
    • /
    • 1995
  • In the tidal compartment, the hydraulic head is affected by the stage of tidal rivers. For groundwater or construct works, head variation of groundwater should be considered in zone of this aquifer. A numerical analysis is performed which has an 1-dimemsional explicit finite difference scheme to show the head variation of groundwater with tidal stage and hydraulic conductivity, etc. The stability of the numerical scheme is validated by using the analytic solution. The head variation of groundwater is observed for various tidal amplititude and hydraulic conductivity, mean hydraulic gradient and pumping at any point. The range of influence corresponding to the parameters used in this study is about 60m. This value is not beyond a wave length (equation omitted). There was a pumping at a constant rate out of aquifers affected by tide and not affected by tide. Because pumping head in aquifer affected by tide is short, the expense of electric power is economized in this zone. These results are applicable to trace of contaminant transport, efficient operation of groundwater, and examination of the safety and stability of works in the tidal compartment.

  • PDF

Development of the Seepage Flow Monitoring Method by the Hydraulic Head Loss Rate (수두손실률에 의한 침투류 감시기법 개발)

  • Eam, Sung-Hoon;Kang, Byung-Yoon;Kim, Ki-Wan;Koo, Ja-Ho;Kang, Shin-Ik;Cha, Hung-Youn;Jung, Jae-Hyun;Cho, Jun-Ho;Kim, Ki-Soo
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.5
    • /
    • pp.37-48
    • /
    • 2010
  • In this study, the seepage flow monitoring method by the hydraulic head loss rate was developed for the purpose of application to offshore construction site enclosed by cofferdams in which seepage force varies periodically. The amount of the hydraulic head loss rate newly defined in this graph was in a range between 0 and 1. The zero of the rate means the existence of flow with no seepage resistance. The 1 of the rate means no seepage flow through the ground. The closer to 1 the coefficient of determinant in the hydraulic head loss graph is, the more the ground through which seepage water flows is stable. The closer to 0 the coefficient of determinant in the hydraulic head loss graph is, the more the ground through which seepage water flows was unstable and the higher the possibilities of existence of empty space or of occurrence of piping on the seepage flow pass in the ground is. The hydraulic head loss graph makes it possible to monitor sensitively the situation of seepage flow state, and the graph helps to understand easily the seepage flow state at the specific section on the whole cofferdam.

Investigation into circulation of ground water by air sparging (Air sparging에 의한 지하수 순환에 관한 연구)

  • 이준희;강구영
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 1998.11a
    • /
    • pp.232-235
    • /
    • 1998
  • Air sparging system is a kind of in-situ bioremediation method in the contaminated ground water. When Air sparging, the both of water circulation and oxygen transfer happend in the same time. The hydraulic differential head is zero at the middle height of well, is negative below the height and is possitive above the height. Hydroraulic head gradient is proportioned to air superficial velocity in the well. But over 24m/min of the superficial velocity, the hydraulic head gradient increase little.

  • PDF

Parameter estimation for identification on cause of drawdown around underground LPG storage cavern (지하 LPG저장공동 주변의 지하수위 강하 원인규명을 위한 파라미터추정)

  • Han, Il-Yeong;Lee, Dae-Hyuck;Lee, Jung-Eun;Jung, Kwang-Pil
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 1998.11a
    • /
    • pp.76-80
    • /
    • 1998
  • In order to identify the cause of ground water drawdown of a piezometer installed around the LPG storage cavern, parameter estimations were conducted by inverse and forward numerical models. An inverse model, SK-EST developed by SK Engineering & Construction Co., Ltd.(SKEC,1997) was performed to estimate the change of the hydraulic conductivity. It was verified by the commercial forward model, AQUA3D (VATNASKIL,1995). The simulation results showed that the hydraulic diffusivity of the rock mass between the piezometer and the cavern had been increased and the change rate of the hydraulic head had been abruptly increased in response to the change of the operation pressure. Finally the statistical analysis for observed data showed the increase of the change rate of the hydraulic head and thus proved the applicability of SK-EST.

  • PDF

Evaluation of the mechanical pipe flowmeter at low hydraulic head (저수두에서 기계식 관수로 유량계의 적용성 평가)

  • Sohn, Seung-Ho;Chung, Sang-Ok
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.53-56
    • /
    • 2002
  • This study presents an evaluation of the mechanical pipe flowmeter at low hydraulic heads. Three flowmeters each of 75mm and 25mm diameter were used. The Flowmeter was tested with experimental open channel apparatus. Relationship between flowmeter values and bucket values was good. The 75mm diameter flow meter showed small relative errors with hydraulic heads above 9cm. The 25mm diameter flow meter showed small relative errors with hydraulic heads above 2cm. The Irrigation flow measurement using the mechanical pipe flowmeter of 75mm diameter in paddy fields needs hydraulic head above 9cm, which is easy to get in tertiary canals.

  • PDF

Groundwaterflow analysis of discontinuous rock mass with probabilistic approach (통계적 접근법에 의한 불연속암반의 지하수 유동해석)

  • 장현익;장근무;이정인
    • Tunnel and Underground Space
    • /
    • v.6 no.1
    • /
    • pp.30-38
    • /
    • 1996
  • A two dimensional analysis program for groundwater flow in fractured network was developed to analyze the influence of discontinuity characteristics on groundwater flow. This program involves the generation of discontinuities and also connectivity analysis. The discontinuities were generated by the probabilistic density function(P.D.F.) reflecting the characteristics of discontinuities. And the fracture network model was completed through the connectivity analysis. This program also involves the analysis of groundwater flow through the discontinuity network. The result of numerical experiment shows that the equivalent hydraulic conductivity increased and became closer to isotropic as the density and trace length increased. And hydraulic head decreased along the fracture zone because of much water-flow. The grouting increased the groundwater head around cavern. An analysis of groundwater flow through discontinuity network was performed around underground oil storage cavern which is now under construction. The probabilistic density functions(P.D.F) were obtained from the investigation of the discontinuity trace map. When the anisotropic hydraulic conductivity is used, the flow rate into the cavern was below the acceptable value to maintain the hydraulic containment. But when the isotropic hydraulic conductivity is used, the flow rate was above the acceptable value.

  • PDF

A Experimental Study on Wear Characteristics of Cu Alloy for Piston Head and Bush Material of Hydraulic Servo Cylinder (유압 서보실린더의 동합금 피스톤 헤드와 부시의 마멸특성에 관한 실험적 연구)

  • Cho, Yon-Sang;Kim, Young-Hee;Byon, Sang-Min;Park, Heung-Sik
    • Tribology and Lubricants
    • /
    • v.25 no.5
    • /
    • pp.330-334
    • /
    • 2009
  • Hydraulic servo cylinders have been used to control accurately a large machine in power plant. Especially, Piston head and bush of servo cylinder is assembled sleeve and piston head and bush made of Cu alloy and pad sealing part. A damages of sleeve and piston head, bush are caused by friction and wear. Thus, It is necessary to examine friction and wear characteristics of Cu alloys for the piston head and bush. In this study, to be reliable on the piston and cylinder parts, dry friction and wear experiments were carried out with Cu alloys of four kinds of AlBC, PBC, BC and BS using reciprocating friction tester of pin on disk type. From this study, the result was shown that the AlBC and PBC with alloy elements were excellent to resistance wear. As the sliding speed was increased, the wear loss of PBC decreased than another Cu alloy.

Lumped Modeling of Thermal Inkjet Print Head (열 잉크젯 프린트헤드의 집중질량 모델링)

  • Lee You-Seop
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.10 s.253
    • /
    • pp.942-949
    • /
    • 2006
  • A lumped model is proposed to predict liquid ejection characteristics of a thermally driven inkjet print head. The model is based on a two-dimensional heat conduction equation, an empirical pressure-temperature equation and a nonlinear hydraulic flow-pressure equation. It has been simulated through the construction of an equivalent R-C circuit, and subsequently analyzed using SIMULINK and a circuit simulation tool, PLECS. Using the model, heating and cooling characteristics of the head are predicted to be in agreement with the IR temperature measurements. The effects of the head geometry on the drop ejection are also analyzed using the nonlinear hydraulic model. The present model can be used as a design tool for a better design of thermal inkjet print heads.