• Title/Summary/Keyword: hydration synthesis of acrylamide

Search Result 3, Processing Time 0.016 seconds

Overproduction of the Escherichia coli Chaperones GroEL-GroES in Rhodococcus ruber Improves the Activity and Stability of Cell Catalysts Harboring a Nitrile Hydratase

  • Tian, Yuxuan;Yu, Chen, Huimin;Shen, Zhongyao
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.2
    • /
    • pp.337-346
    • /
    • 2016
  • Three combinations of molecular chaperones from Escherichia coli (i.e., DnaK-DnaJ-GrpE-GroEL-GroES, GroEL-GroES, and DnaK-DnaJ-GrpE) were overproduced in E. coli BL21, and their in vitro stabilizing effects on a nitrile hydratase (NHase) were assessed. The optimal gene combination, E. coli groEL-groES (ecgroEL-ES), was introduced into Rhodococcus ruber TH3. A novel engineered strain, R. ruber TH3G was constructed with the native NHase gene on its chromosome and the heterologous ecgroEL-ES genes in a shuttle plasmid. In R. ruber TH3G, NHase activity was enhanced 37.3% compared with the control, TH3. The in vivo stabilizing effect of ecGroEL-ES on the NHase was assessed using both acrylamide immersion and heat shock experiments. The inactivation behavior of the in vivo NHase after immersion in a solution of dynamically increased concentrations of acrylamide was particularly evident. When the acrylamide concentration was increased to 500 g/l (50%), the remaining NHase activity in TH3G was 38%, but in TH3, activity was reduced to 10%. Reactivation of the in vivo NHases after varying degrees of inactivation was further assessed. The activity of the reactivated NHase was more than 2-fold greater in TH3G than in TH3. The hydration synthesis of acrylamide catalyzed by the in vivo NHase was performed with continuous acrylonitrile feeding. The final concentration of acrylamide was 640 g/l when catalyzed by TH3G, compared with 490 g/l acrylamide by TH3. This study is the first to show that the chaperones ecGroEL-ES work well in Rhodococcus and simultaneously possess protein-folding assistance functions and the ability to stabilize and reactivate the native NHases.

Synthesis and Physical Properties of Hydrophilic Biomedical Polymers -Poly (N-substituted Acrylamide) and its Copolymer- (친수성 생의용 고분자의 합성 및 물성에 관한 연구)

  • 성용길;고대유
    • Journal of Biomedical Engineering Research
    • /
    • v.9 no.1
    • /
    • pp.47-60
    • /
    • 1988
  • N-n-Propylacrylamide has been synthesized from acrylamide and n-propyl bromide. N -n Propylacrylamide was copolymerized with acrylamide at $60^{\circ}C$ in tetrahydrofuran using ${\alpha},{\alpha}'$-azobisisbutyronitrile as initiator. The synthesized monomer and copolymers have been identified by NMR and FT-lR spectrophotometer. The swelling properties of the crosslinked homopolymers were investigated at different temperatures. Three types of hydration layer around the back-bone structure of gels were determined. The thermal properties of copolymers were also measured by differential scanning calorimeter and thermogravimetry. As the amounts of N-n-propylacrylamide are increased, the enthalpic changes associated with endothermic transition and glass transition of the copolymers are decreased. As the amount of N-n-propylacrylamide is increased, the thermal stability is increased. The activation energies of thermal decomposition and dehydration for the poly (acrylamide-co-N -n-propylacrylamide) have been evaluated by Freeman and Carroll's method. As the amounts of N-n- propylacrylamide are increased, the activation energies of thermal decomposition and dehydration are increased.

  • PDF