• Title/Summary/Keyword: hydration properties

Search Result 694, Processing Time 0.034 seconds

Properties of the Modified Belite Cement with Slag (슬래그를 혼합한 개량형 벨라이트 시멘트의 특성)

  • 안태호;박원기;박동철;심광보;최상홀
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.7
    • /
    • pp.685-690
    • /
    • 1999
  • Modified belite cement clinker containing $\alpha$'-C2S and C4A3 were syntehsized form the mixture of raw materials. $\alpha$'-C2S was stabilized at room temperature by adding borax. Properties of the clinker were charaterized with a XRD, SEM, TEM The additive effects of slag on the hydration properties were also estimated by measurement of compressive strength fluidity and heat evolution. The experimental results exhibited that the addition of slag to the belite cement improves the fluidity and early compressive strength due to the formation of ettringite and C-S-H. The compressive strengths of the mortar with 20% slag after 7, 90 days hydration were 212, 355 kgf/cm2 respectively.

  • PDF

Mechanical Properties of Cement Mortar: Development of Structure-Property Relationships

  • Ghebrab, Tewodros Tekeste;Soroushian, Parviz
    • International Journal of Concrete Structures and Materials
    • /
    • v.5 no.1
    • /
    • pp.3-10
    • /
    • 2011
  • Theoretical models for prediction of the mechanical properties of cement mortar are developed based on the morphology and interactions of cement hydration products, capillary pores and microcracks. The models account for intermolecular interactions involving the nano-scale calcium silicate hydrate (C-S-H) constituents of hydration products, and consider the effects of capillary pores as well as the microcracks within the hydrated cement paste and at the interfacial transition zone (ITZ). Cement mortar was modeled as a three-phase material composed of hydrated cement paste, fine aggregates and ITZ. The Hashin's bound model was used to predict the elastic modulus of mortar as a three-phase composite. Theoretical evaluation of fracture toughness indicated that the frictional pullout of fine aggregates makes major contribution to the fracture energy of cement mortar. Linear fracture mechanics principles were used to model the tensile strength of mortar. The predictions of theoretical models compared reasonably with empirical values.

The Influence of Polymers on the Hydration of Modified Cement System (속경형시멘트의 수화거동에서 폴리머의 영향)

  • Park, Phil-Hwan;Lee, Kyoung Hee
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.9
    • /
    • pp.496-501
    • /
    • 2007
  • The properties of the polymer-modified mortars are influenced by the polymer film, cement hydrates and the combined structure between the organic and inorganic phases. Also, this quality of polymer modified cement strongly depend on weather condition. To overcome this problem, polymer-modified cement based on rapid setting cement mortars were prepared by varying polymer/cement mass ratio (P/C) with a constant water/cement mass ratio of 0.5. The effect of polymer on the hydration of this polymer cement is studied on different curing temperature. The results showed that the polymer mortar which is modified with rapid setting cement have superior physical strength properties on independent curing temperature. In addition the PIC ratio, the compressive strength, flexural strength, tensile strength and adhesion strength of mortar is enhances and polymer-modified cement based on rapid setting cement is more beneficial to the improvement of the mortar properties in jobsite.

Characteristics of Reduction of Hydration Heat through Utilization of Blast Furnace Slag in the Cement-based Landfill Soil Liner System (고로슬래그를 이용한 폐기물 매립지 고화토차수층의 수화열 저감특성)

  • Cho, Jae-Beom;Hyun, Jae-Hyuk;Lee, Jong-Deuk;Park, Joung-Ku
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.12
    • /
    • pp.1327-1331
    • /
    • 2005
  • This study was to investigate the reduction of hydration heat by utilizing industrial by-products such as BFS(Blast Furnace Slag). DM(Dredged Mud) was used by parent soil and Ordinary portland cement was used by cementing material. Additive added to reduce the heat of hydration was BFS. From the results of experiment, hydration heat was decreased in accordance with the addition of BFS. The reason was that surface of BFS coated with aluminosulfate. Initial uniaxial strength was low, neither was not long term uniaxial strength. It was concluded that silica rich layer($H_2SiO_4^{4-}$) in solid phase early in the reaction of hydration was difficultly moved in liquid phase due to the increase of ZP(Zeta Potential). However, the ZP in the later hydration was decreased due to the acceleration of mobility of silica rich layer($H_2SiO_4^{4-}$). Therefore, long term physical properties such as uniaxial strength revealed.

Hydration Heat and Crack-Reducing Properties of Cement Mortar Added Fluosilicate Salt Based Hydration Heat Reducer (규불화염계 수화열 저감제가 첨가된 시멘트 모르타르의 수화열 변화 및 균열저감 특성)

  • Kim, Jin-Yong;Lee, Hyo-Song;Rhee, Young-Woo;Kim, Do-Su;Lee, Byoung-Ky;Khil, Bae-Su;Han, Seung-Gu
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.3 s.274
    • /
    • pp.198-204
    • /
    • 2005
  • Fluosilicate salts based hydration heat reducer(SWP-HR), used in this study, is composed of fluosilicate salts, soluble silica, aromatic polymer condensate and nitrate salt based inorganic compound with latent heat property. Effects of SWP-HR addition on the hydration heat and anti-crack property of cement mortar were investigated. Adiabatic hydration temperature and drying shrinkage length of SWP-HR added cement mortar had a tendency to decrease compared to those of cement mortar without SWP-HR addition. Also, it was confirmed through crack pattern experiment of plate-form specimen for elucidating crack-reducing characteristic that anti-crack property of SWP-HR added cement mortar was improved.

A Statistical Analysis on Hydration Heat and Autogenous Shrinkage of High Strength Concrete in Early Age Using Blast Furnace Slag (고로슬래그 미분말을 다량 사용한 고강도 콘크리트의 초기 수화발열 및 자기수축 특성에 관한 통계적 분석)

  • Koo, Kyung-Mo;Nam, Jeong-Soo;Lee, Eui-Bae;Kim, Young-Duck;Kim, Gyu-Yong;Kim, Moo-Han
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.657-660
    • /
    • 2008
  • In this study, quantitative analysis on effect of hydration heat and autogenous shrinkage of concrete using BFS was studied. Especially, it analyze section data statistically which hydration heat and autogenous shrinkage rise, and it appeared the correlation of hydration heat and autogenous shrinkage as well as quantitative coefficients of the main properties. As a result, the section which hydration heat and autogenous shrinkage of BFS-50 rise rapidly is delayed than OPC, but the slope of hydration heat and autogenous shrinkage in that section appeared similar shape in each mixing. Finally it will be possible to control the amount of autogenous shrinkage because hydration heating velocity and autogenous shrinking velocity are decreased by using BFS.

  • PDF

Hydration Properties of High Volume Cement Matrix Using Blast Furnace Slag and Alkaline Aqueous by Electrolysis (고로슬래그 및 전기분해한 알칼리 수용액을 사용한 하이볼륨 시멘트 경화체의 수화특성)

  • Kim, Sun-A;Park, Sun-Gyu
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.1
    • /
    • pp.8-13
    • /
    • 2017
  • This experimental study is purposed to analyze the effect of alkaline aqueous solution by electrolysis on strength development in order to develop high volume cement matrix using industrial by-products. Blast furnace slag was used a binder, and an alkaline aqueous solution obtained by electrolyzing pure water was used as an alkali activator. The hydration properties of these specimens were then investigated by compressive strength test, XRD and observation of micro-structures using SEM. As a result, we found that compressive strength increased with the addition of alkaline aqueous solution which cement matrix incorporating blast furnace slag. But those strength decreased reversely when replacing ratio of blast furnace slag was increased. It is judged that results of engineering properties evaluation on the binder and alkaline aqueous solution are useful as a basic data for mixtures design and evaluation properties of high volume cement matrix using by-products.

Models for Hydration Heat Development and Mechanical Properties of Ultra High Performance Concrete (초고성능 콘크리트의 수화발열 및 역학적 특성 모델)

  • Cha, Soo-Won;Kim, Ki-Hyun;Kim, Sung-Wook;Park, Jung-Jun;Bae, Sung-Geun
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.3
    • /
    • pp.389-397
    • /
    • 2010
  • Concrete has excellent mechanical properties, high durability, and economical advantages over other construction materials. Nevertheless, it is not an easy task to apply concrete to long span bridges. That's because concrete has a low strength to weight ratio. Ultra high performance concrete (UHPC) has a very high strength and hence it allows use of relatively small section for the same design load. Thus UHPC is a promising material to be utilized in the construction of long span bridges. However, there is a possibility of crack generation during the curing process due to the high binder ratio of UHPC and a consequent large amount of hydration heat. In this study, adiabatic temperature rise and mechanical properties were modeled for the stress analysis due to hydration heat. Adiabatic temperature rise curve of UHPC was modeled superposing 2-parameter model and S-shaped function, and the Arrhenius constant was determined using the concept of equivalent time. The results are verified by the mock-up test measuring the temperature development due to the hydration of UHPC. In addition, models for mechanical properties such as elastic modulus, tensile strength and compressive strength were developed based on the test results from conventional load test and ultrasonic pulse velocity measurement.