• Title/Summary/Keyword: hydration product

Search Result 133, Processing Time 0.023 seconds

Self-Cementitious Hydration of Circulating Fluidized Bed Combustion Fly Ash

  • Lee, Seung-Heun;Kim, Guen-Su
    • Journal of the Korean Ceramic Society
    • /
    • v.54 no.2
    • /
    • pp.128-136
    • /
    • 2017
  • Fly ash from a circulating fluidized bed combustion boiler (CFBC fly ash) is very different in mineralogical composition, chemical composition, and morphology from coal ash from traditional pulverized fuel firing because of many differences in their combustion processes. The main minerals of CFBC fly ash are lime and anhydrous gypsum; however, due to the fuel type, the strength development of CFBC fly ash is affected by minor components of active $SiO_2$ and $Al_2O_3$. The initial hydration product of the circulating fluidized bed combustion fly ash (B CFBC ash) using petro coke as a fuel is Portlandite which becomes gypsum after 7 days. Due to the structural features of the portlandite and gypsum, the self-cementitious strength of B CFBC ash was low. While the hydration products of the circulating fluidized bed combustion fly ash (A CFBC ash) using bituminous coal as a fuel were initially portlandite and ettringite, after 7 days the hydration products were gypsum and C-S-H. Due to the structural features of ettringite and C-S-H, A CFBC ash showed a certain degree of self-cementitious strength.

Predicted of hydration heat and compressive strength of limestone cement mortar with different type of superplasticizer

  • Didouche, Zahia;Ezziane, Karim;Kadri, El-Hadj
    • Advances in concrete construction
    • /
    • v.6 no.6
    • /
    • pp.659-677
    • /
    • 2018
  • The use of some superplasticizers in the production of mortar or concrete influences the hydration kinetic and the amount of total heat. This results in a modification of some properties, namely mortar workability, mechanical strength and durability. Three superplasticizers were used; a polynaphthalenesulfonate (PNS), a melamine resin (PMS) and a polycarboxylate (PC). They have been incorporated into various amount in a standardized mortar based on limestone cement. The aim of this study was to evaluate the rheological, mechanical and Calorimeters properties of this mortar. This will select the most compatible product and more able to be used depending on the climate of the country and the cement used. The PNS is incompatible with this type of cement registering a decrease of strength but the PMS and the PC modify the kinetics of hydration with significant heat generation and improved mechanical strength. The measured heat flow is significantly influenced by the type and dosage of superplasticizer especially for low dosage. Hydration heat and compressive strength of the different mixtures can be evaluated by determining their ultimate values and ages to reach these values where the correlation coefficients are very satisfactory.

Characteristics of Hydraulic Lime using Low-grade Dolomitic Limestone

  • Moon, Ki-Yeon;Choi, Moon-Kwan;Cho, Jin-Sang;Cho, Kye-Hong;Ahn, Ji-Whan
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.2
    • /
    • pp.206-214
    • /
    • 2016
  • This study aims to produce dolomitic hydraulic lime (D-NHL) using domestic low grade dolomitic limestone and to determine the effect of adding blast furnace slag (BFS) and gypsum as part of an investigation of the hydration properties of D-NHL to increase the mechanical properties. The main mineral phases of D-NHL as a hydraulic lime binder were $Ca(OH)_2$, $Mg(OH)_2$, $C_2S$, $C_3S$, and MgO residues. $Ca(OH)_2$ transformed into $CaCO_3$ in D-NHL paste over the period of 28 days, but the carbonation of $Mg(OH)_2$ and the hydration of $C_2S$ did not occur until hydration, after 28 days. Through an investigation of the hydration properties of D-NHL pastes mixed with BFS and gypsum, Al-based compounds such as calcium aluminate hydrates ($C_4AH_{13}$) and ettringite were observed at early hydration time. The compressive strength was improved due to the increased quantities of these hydration products. These results show that good performance results from the application of dolomitic hydraulic lime and that a high value product can be made from domestic waste materials.

A Variation of Non-Evaporable Water and Calcium Hydroxides of Concrete with Various Curing Temperatures and Ages (양생온도와 재령에 다른 콘크리트의 결합수량과 수산화칼슘의 변화)

  • 이창수;윤인석;이규동
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.273-276
    • /
    • 2003
  • The non-evaporable water and calcium hydroxides were measured by TG/DTA for studying the temperature effect on hydration of concrete mixture. The experimental parameters introduced in this study were the curing temperatures, ages and W/C ratios. The mixing temperature was also controlled to improve the efficiency of experimental work. While the mixture cured at high temperature showed the large quantity of non-evaporable water and calcium hydroxides at early age, the production rate of these hydration products was decreased as increasing the curing age, and the quantity of hydration product became smaller than that of the corresponding mixture cured at lower temperature at later age.

  • PDF

Hydration Characteristics of Cement Paste Added Liquid and Neutralized Red Mud (액상 및 중화 레드머드를 첨가한 시멘트 페이스트의 수화특성)

  • Kang, Hye Ju;Kang, Suk Pyo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.11a
    • /
    • pp.104-105
    • /
    • 2020
  • Red mud is a highly alkaline waste by-product of the aluminum industry. Although recycling of red mud is being actively researched, a feasible technological solution has not been found yet. In this study, we propose that neutralization of red mud alkalinity could assist in its use as a construction material. Neutralized red mud ( pH 6-8) was prepared by adding sulfuric acid to liquefied red mud (pH 10-12). After adding liquid and neutralized red mud to the cement paste, the heat of hydration was measured. As a result of the experiment, the calorific value of the cement paste with liquid red mud was lowered and delayed compared to the cement paste with neutralized red mud.

  • PDF

A Clinical Study for Moisturizing Effects of Herbal Cosmetics Containing Sinhyotakrisan Extracts (신효탁리산 함유 한방화장품의 보습 효능에 대한 임상적 연구)

  • Kang, Min-Seo;Kim, Yong-Min;Kim, Hee-Taek
    • The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology
    • /
    • v.29 no.1
    • /
    • pp.81-92
    • /
    • 2016
  • Objectives : The purpose of this study is to confirm the moisturizing effects of Herbal cosmetics containing Sinhyotakrisan(SHTL) extracts on facial skin.Methods : A total of 23 women who visited Semyung Oriental Medical Center from January 10th, 2014 to Feburary 12th, 2014 were included in the study. Provided both cosmetics containing Sinhyotakrisan extract and control products, all the subjects applied one of them to half face and another to remaining half for 4 weeks. We observed change of skin hydration, skin elasticity, skin scale in 0 week, 2 weeks, and 4weeks. Statistical anyalysis was performed by using SPSS, and statistical significance was achieved if the proability was less than 5%(p<0.05).Results : 1. After 4 weeks of using SHTL, skin hydration showed a statistically significant increase compared with using control product(p=0.011). And improvement rate also did(p=0.031). 2. After 4 weeks of using SHTL, skin elasticity showed statistically significant increase compared with using control product(p=0.025). But improvement rate didn't showed statistically significant increase(p=0.068). 3. After 4 weeks of using SHTL, skin scale showed a statistically significant decrease compared with using control product(p=0.029). And improvement rate also did(p=0.047).Conclusions : Considering the above results, herbal cosmetics containing Sinhyotakrisan extracts were effective for skin moisturizing.

Hydration Characteristics and Synthesis of Hauyne-Belite Cement as Low Temperature Sintering Cementitious Materials

  • Park, Sang-Jin;Jeon, Se-Hoon;Kim, Kyung-Nam;Song, Myong-Shin
    • Journal of the Korean Ceramic Society
    • /
    • v.55 no.3
    • /
    • pp.224-229
    • /
    • 2018
  • OPC production requires high calorific value and emits a large amount of $CO_2$ through decarbonation of limestone, accounting for about 7% of $CO_2$ emissions. To reduce $CO_2$ emissions during the Ordinary Portland Cement (OPC) production process, there is a method of reducing the consumption of cement or lower temperature calcination for OPC product. In this study, for energy consumption reduction, we prepared Hauyne-belite cement by calcination at a low temperature compared to that used for OPC and studied the early hydration properties of the synthesized Hauyne-belite cement. We set the ratios of Hauyne and belite to 8 : 2, 5 : 5 and 3 : 7. For the hydration properties of the synthesized Hauyne-belite cement, we tested heat of hydration of paste and the compressive strength of mortar, using XRD and SEM for analysis of hydrates. As for our results, the temperature for optimum synthesis of Hauyne-belite is $1,250^{\circ}C$. Compressive strength of synthesized Hauyne-belite cement is lower than that of OPC, but it is confirmed that compressive strength of synthesized Hauyne-belite cement with mixing in of some other materials can be similar to that of OPC.

The Influence of KCl on the Hydration Property of OPC (시멘트의 수화 특성에 미치는 KCl의 영향)

  • Lee, Eui-Hak;Jeong, Chan-Il;Park, Soo-Kyung;Lee, Kyung-Hee
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.10
    • /
    • pp.943-947
    • /
    • 2002
  • In order to examine the possibility of incineration of inderstrial by-product and wastes which contains a large percentage of chlorine by the cement kiln, measured heat of hydration, setting time, flow, change of length, compressive strength of OPC by the amount of KCl. The result was that a shorter setting time, a lower flow, a increasing the degree of initial shrinkage, a increasing of compressive strength before 3 days and decrease after 7 days by the induction period is shorter as promote the hydration with KCl.

Quality Characteristics of Commercial Yoghurt Powder Marketed in Korea (국내 시판 요구르트 분말의 품질 특성)

  • Lee, Jeae;Jeun, Gihoon;Lim, Kwangsei;Oh, Sejong;Park, Dong June;Imm, Jee-Young
    • Journal of Dairy Science and Biotechnology
    • /
    • v.32 no.2
    • /
    • pp.157-161
    • /
    • 2014
  • Quality characteristics of commercial yoghurt powder products marketed in Korea were compared. According to the product type classification, no product met the product identity of "fermented milk powder" (six were identified as "other processed product" and nine as "sugar product"). Titratable acidity of products (10%, w/v) varied from 0.11 to 0.82% while numbers of lactic acid bacteria varied from 0 to $1.4{\times}10^8CFU/g$. There were significant differences in hydration properties and viscosity of yoghurt powder products. Some regulations are required to avoid consumer misunderstanding of beneficial health effects of yoghurt powder products.

  • PDF

Thermodynamic Modelling of Blast Furnace Slag Blended Cement Composites (고로슬래그가 치환된 시멘트복합체의 열역학적 모델링)

  • Yang, Young-Tak;Cha, Soo-Won
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.4
    • /
    • pp.488-495
    • /
    • 2017
  • In this study, we conducted the kinetic hydration modeling of OPC and the final product according to the substitution ratio of GGBS by using the geochemical code, GEMS, in order to calculate the thermodynamic equilibrium. The thermodynamic data was used by GEMS's 3rd party database, Cemdata18, and the cement hydration model, the Parrot & Killoh model was applied to simulate the hydration process. In OPC modeling, ion concentration of pore solution and hydration products by mass and volume were observed according to time. In the GGBS modeling, as the substitution rate increases, the amount of C-S-H, which contributes the long-term strength, increases, but the amount of Portlandite decreases, which leads to carbonation and steel corrosion. Therefore, it is necessary to establish prevention of some deterioration.