• Title/Summary/Keyword: hydration of cement

Search Result 886, Processing Time 0.025 seconds

Temperature Crack Contol in Subway Box Structures (지하철 박스 구조물에서의 온도균열제어)

  • Koo, Bon-Chang;Kim, Dong-Seuk;Ha, Jae-Dam;Kim, Ki-Soo;Choi, Long;Oh, Byung-Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.293-298
    • /
    • 1999
  • The crack of concrete induced by the heat of hydration is a serious problem, particularly in concrete structures such as underground box structure, mat-slab of nuclear reactor buildings, dams or large footings, foundations of high rise buildings, etc.. As a result of the temperature rise and restriction condition of foundation, the thermal stress which may induce the cracks can occur. Therefore the various techniques of the thermal stress control in massive concrete have been widely used. One of them is prediction of the thermal stress, besides low-heat cement which mitigates the temperature rise, pre-cooling which lowers the initial temperature of fresh concrete with ice flake, pipe cooling which cools the temperature of concrete with flowing water, design change which considers steel bar reinforcement, operation control and so on. The objective of this paper is largely two folded. Firstly we introduce the cracks control technique by employing low-heat cement mix and thermal stress analysis. Secondly it show the application condition of the cracks control technique like the subway structure in Seoul.

  • PDF

Distribution of Calcium Hydroxide at the ITZ between Steel and Concrete

  • Ann Ki-Yong;Kim Hong-Sam;Kim Yang-Bae;Moon Han-Young
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.3 s.87
    • /
    • pp.481-485
    • /
    • 2005
  • The present study examines the distribution of calcium hydroxide, unhydrated cement grain and porosity at the steel-concrete interface. The formation of calcium hydroxide has been confirmed by microscopic analysis using BSE images containing the ITZ between the steel and concrete. It was found that calcium hydroxide does not form a layer on the steel surface, different from the hypothesis that has been available in investigating the corrosion of steel in concrete, ranging from 5 to $10\%$ within the steel surface. Moreover, the high level of porosity at the ITZ was observed, accounting for $30\%$, which may reduce the buffering capacity of cement hydration products against a local fall in the pH. These findings may imply that the mole of ($Cl^-$) :($OH^-$) in pore solution as chloride threshold level lead to wrong judgement or to a wide range of values.

Study on Utilization of Converter Slag as Concrete Admixture

  • Satou, Masaki;Tsuyuki, Naomitsu;Umemura, Yasuhiro;Harada, Hiroshi
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.514-519
    • /
    • 2001
  • Converter has been slag produced 10 million tons per year in Japan. It is a steel making by product produced in the same way as the blast-furnace slag. Though blast-furnace slag is being used effectively as a concrete admixture, the converter stag has never been used effectively because of the expansion action of contained free lime and iron oxide. This is an important environmental problem in the steel industry. Beta-2CaOSiO$_2$(beta-C$_2$S) is contained 40 percent in converter slag, therefore it is very promising as a concrete admixture. We proposed an accelerated aging processes capable of stabilizing the converter slag in a short time. The converter slag is dipped into alkali aqueous solution after heating at low temperature. It was subsequently ground to a grain size of 75 ${\mu}{\textrm}{m}$ , inner 30 percent of OPC. The properties of mortar and concrete using the blended cement were determined. As a result, it has become apparent that the expansion was reduced and long term compressive strength was increased while that at early ages was not so remarkable. The hydration exotherm rate was lower than that of the OPC.

  • PDF

Korean Lignocellulosics and Portland Cement as a Structural Material (건축재로 국산목질과 포틀랜드 시멘트)

  • Ahn, Won-Yung;Moslemi, Ali A.
    • Journal of the Korean Wood Science and Technology
    • /
    • v.12 no.4
    • /
    • pp.36-46
    • /
    • 1984
  • In order to investigate the inhibitory index (I) and the effects of hot water extraction treatments and addition of accelerators on the index in hardening of Korean lignocellulosics, portland cement (Type I) and water system, hydration tests were carried out on 8 Korean lignocellulosics, namely, Pinus densiflora, Pinus rigida, Pinus koraiensis, Abies holophylla, Larix leptoiepis, Populus alba-glandulosa, rice husk and rice stalk with or without hot water extraction or chemical additives. The inhibitory index of Pinus densiflora and Pinus rigida found to be suitable under limited conditions for composite without any treatment. With hot water treatment rice husk, Pinus koraiensis, Larix leptolepis, and A hies holophylla were reclassified from not suitable to suitable under limited conditions. Combining hot water extraction with chemical addition of accelerator, calcium chloride of magnesium chloride, Populus alba-glandulosa, Larix leptolepis, and Pinus rigida became highly suitable.

  • PDF

Effect on the Crack Resistance of Fiber Reinforced Concrete using Incinerated Paper Mill Sludge Ash (제지(製紙) 슬러지 소각재(燒却滓)를 활용(活用)한 섬유보강(纖維補强)콘크리트의 균열(龜裂) 억제(抑制) 효과(效果))

  • Kim, Nam-Wook
    • Resources Recycling
    • /
    • v.17 no.4
    • /
    • pp.10-20
    • /
    • 2008
  • This study was intended to use an incinerated paper mill sludge ash as cement alternatives in order to derive a method of utilizing the incinerated paper mill sludge ash of low utilization rate in large quantities. Also, the utilization possibility of incinerated paper mill sludge ash as the cement alternative was examined by mixing a polypropylene fiber and cellulose fiber and by considering its control effect for shrinkage cracks caused by an increase of absorption rate and hydration heat, as a weakness shown at the alternation of incinerated paper mill sludge ash.

Strength Properties of Non-cement Matrix by Using Recycled Aggregates and Sludge from Ready-Mixed Concrete (레미콘의 슬러지 고형분과 회수골재를 사용한 무시멘트 경화체의 강도특성)

  • Ryu, Dong-Woo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.4
    • /
    • pp.477-482
    • /
    • 2016
  • This study investigates the expressions characteristics of compression strength depending on the condition of fresh concrete and cured concrete by producing Non-cement mortar and concrete only with solidified sludge in the dehydrated cake form, recycled concrete and premixed materials(BS, FA) in order to actively use remicon recycling water as resources, rather than as construction waste material. After treating wastewater of pH 12.5 or more with alkali activator and after promoting BS hydration reaction, the amount of BS inflow was found to be increased and compression strength was increased accordingly: these results coincide with the analysis results of TG-DTA and SEM.

The Comparative Experimental Study of short and long-term Behavior of the Blended High-Fluidity Cement Concrete and Existing Nuclear Power Plant Structural Concrete (기존 원전용 콘크리트와 다성분계 고유동 콘크리트의 장·단기거동 비교 실험 연구)

  • Lee, Pyung-Suk;Kwon, Ki-Joo;Kim, Su-Man
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.8 no.4
    • /
    • pp.195-202
    • /
    • 2004
  • In this study, it was founded to make the optimal mixture for producing concrete which is self-compacting, yet, and generates low heat of hydration by using flyash, blast furnace slags and limestone powders as binders in addition to cement while using super-plasticizers and viscosity agents as admixture agents. The structural behaviors of the concrete produced with the selected mixture were compared with those of the concrete currently using for construction of nuclear power plants. The study shows that the blended high fluidity concrete including limestone is better in workability and durability than the concrete currently in use for nuclear power plants.

The Study of Offensive Odor Sense Test of Construction Materials (건축자재의 악취관능시험법에 관한 연구)

  • Jang, Hong-Seok;Mun, Kyoung-Ju;So, Seung-Young;Soh, Yang-Seob
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.825-828
    • /
    • 2008
  • Along with elevation of life of modern persons and living, interest for living environment and concrete rose by new request augmentation about health. and the qualitative-quantitative estimation for environment is required. This studies applied sense method of examination that measure fetid offensive smell strength using person's rear trail who is healthy by basis valuation method about concrete air environment. and this study Presented offensive odor estimation processor of cement mortar. Measured fetid degree that cement can happen at early hydration process step.

  • PDF

Manufacturing Properties and Hardening Characteristic of CO2 Reactive Hardening Cement (이산화탄소 반응경화 시멘트 제조 및 경화특성 연구)

  • Ki-Yeon Moon;Byung-Ryeol Kim;Seung-Han Lee;Moon-Kwan Choi;Kye-Hong Cho;Jin-Sang Cho
    • Resources Recycling
    • /
    • v.31 no.6
    • /
    • pp.52-59
    • /
    • 2022
  • Calcium silicate based cement (CSC) is a low-carbon cement that emits less CO2 by up to 70% compared to ordinary Portland cement during its manufacture. Most developed countries have commercialized CSC, whereas Korea is still investigating the manufacturing characteristics and basic properties of CSC. This paper provides a review of methods for manufacturing CSC using domestic raw materials and discusses the possibility of CSC localization based on an evaluation of the basic physical properties of manufactured CSC. The experimental results of this study indicate that the primary mineral components of CSC were CS, C3S2 C2S, and unreacted SiO2. This suggests the possibility of manufacturing CSC using domestic raw materials that exhibit mineral compositions similar to that of theoretical CSC. The compressive strength of CSC mortar is less than 1MPa at the age of 7 d under wet curing. This implies that hydration does not affect the property development of CSC mortar. Meanwhile, during carbonation curing, the compressive strength is 56 MPa or higher after 7 d, which indicates excellent early strength development. Furthermore, results of Thermogravimetric Analysis Differential scanning calorimetry (TG/DSC) show that a significant amount of CaCO3 is formed, which is consistent with the results of previous studies. This implies that carbonation is associated significantly with the properties of CSC.

Effect of Different Curing Methods on the Unconfined Compressive Strength of Cemented Sand (양생방법에 따른 고결모래의 일축압축강도 특성)

  • Park, Sung-Sik;Kim, Ki-Young;Choi, Hyun-Seok;Kim, Chang-Woo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.5C
    • /
    • pp.207-215
    • /
    • 2009
  • Cemented soils or concrete are usually cured under moisture conditions and their strength increases with curing time. An insufficient supply of water to cemented soils can contribute to hydration process during curing, which results in the variation of bonding strength of cemented soils. In this study, by the consideration of in situ water supply conditions, cemented sand with cement ratio less than 20% is prepared by air dry, wrapped, moisture, and underwater conditions. A series of unconfined compression tests are carried out to evaluate the effect of curing conditions on the strength of cemented soils. The strength of air dry curing specimen is higher than those of moisture and wrapped cured specimens when cement ratio is less than 10%, whereas it is lower when cement ratio is greater than 10%. Regardless of cement ratio, air dry cured specimens are stronger than underwater cured specimens. A strength increase ratio with cement ratio is calculated based on the strength of 4% cemented specimen. The strength increase ratio of air dry cured specimen is lowest and that of wrapped, moisture, and underwater cured ones increased by square. Strength of air dry cured specimen drops to maximum 30% after wetting when cement ratio is low. However, regardless of cement ratio, strength of moisture and wrapped specimens drops to an average 10% after wetting. The results of this study can predict the strength variation of cemented sand depending on water supply conditions and wetting in the field, which can guarantee the safety of geotechnical structures such as dam.