• Title/Summary/Keyword: hydration of cement

Search Result 884, Processing Time 0.028 seconds

Influence of Nano Silica Dispersant on Hydration Properties of Cementitious Materials (시멘트의 수화특성에 대한 유·무기 복합 나노실리카의 영향)

  • Kang, Hyun-Ju;Song, Myong-Shin;Park, Jong-Hun;Song, Su-Jae
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.6
    • /
    • pp.510-515
    • /
    • 2011
  • In this study, as a material used to replace silica fumes for high strength concrete, nano-silica compound with organic functional group for dispersion and with inorganic silica group that can cause a pozzolan reaction is synthesized, These nano silica compound is divided into IC, which is nano size $SiO_2$ with irregularly combined hydroxyl group and carboxyl group, and RC, which is nano size $SiO_2$ with regularly combined hydroxyl group and carboxyl group. The effects of these nano silica compound on the hydration of cement are reviewed. As a result, all of synthesized nano-silica compounds have excellent dispersion on the cement flow, we think that dispersion property is the effect of air entraining by synthesized nano-silica compounds. The result of the microstructure observation showed that the particle size of the synthesized nano-silica is smaller than silica fume and spread evenly among the cement particles. In initial The phenomenon of strength decreasing occurred due to delayed hydration reaction by the synthesized nano-silica with carboxyl(-COOH) and hydroxyl(-OH) functional group.

The Analysis of Early Age Properties of Hydration Heat and Autogenous Shrinkage according to Specimen Size and Retardation of Hydration (시험체 크기 및 수화지연 효과에 따른 초기재령 수화발열 및 자기수축 특성 분석)

  • Kim, Gyu-Yong;Koo, Kyung-Mo;Lee, Hyoung-Jun;Lee, Eui-Bae
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.4
    • /
    • pp.481-488
    • /
    • 2009
  • It has been reported that the magnitude and the development rate of autogenous shrinkage of cement paste, mortar and concrete were affected by history and magnitude of inner temperature at an early age. But it was not enough to explain the relation between hydration heat and autogenous shrinkage at an early age, because there was no certain analysis on histories of hydration heat and autogenous shrinkage in previous studies. In our prior study, to understand the relationship between hydration heat and autogenous shrinkage of concrete at an early age, the analysis method for histories of hydration heat and autogenous shrinkage was suggested. Based on this method, early age properties of hydration heat and autogenous shrinkage of high strength concrete with different sizes and hydration retardation were investigated in this study. As a result of the study, properties of hydration temperature and autogenous shrinkage were different according to specimen size and hydration retardation. However, there was a close relationship between hydration temperature and autogenous shrinkage at an early age, especially between HHV and ASV as linear slopes of the sections where hydration temperature and autogenous shrinkage increase rapidly; the higher HHV, the higher ASV and the greater ultimate autogenous shrinkage. And it was found that, among the setting time, bend point and temperature increasing point, they were close relationship each other on cement hydration process.

Characteristics of Reduction of Hydration Heat through Utilization of Blast Furnace Slag in the Cement-based Landfill Soil Liner System (고로슬래그를 이용한 폐기물 매립지 고화토차수층의 수화열 저감특성)

  • Cho, Jae-Beom;Hyun, Jae-Hyuk;Lee, Jong-Deuk;Park, Joung-Ku
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.12
    • /
    • pp.1327-1331
    • /
    • 2005
  • This study was to investigate the reduction of hydration heat by utilizing industrial by-products such as BFS(Blast Furnace Slag). DM(Dredged Mud) was used by parent soil and Ordinary portland cement was used by cementing material. Additive added to reduce the heat of hydration was BFS. From the results of experiment, hydration heat was decreased in accordance with the addition of BFS. The reason was that surface of BFS coated with aluminosulfate. Initial uniaxial strength was low, neither was not long term uniaxial strength. It was concluded that silica rich layer($H_2SiO_4^{4-}$) in solid phase early in the reaction of hydration was difficultly moved in liquid phase due to the increase of ZP(Zeta Potential). However, the ZP in the later hydration was decreased due to the acceleration of mobility of silica rich layer($H_2SiO_4^{4-}$). Therefore, long term physical properties such as uniaxial strength revealed.

Effects of Calcium Aluminate Compounds on Hydration of BFS

  • Song, Hyeon-jin;Kang, Seung-Min;Jeon, Se-Hoon;Kim, Jung-Won;Song, Myong-Shin
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.6
    • /
    • pp.483-488
    • /
    • 2015
  • Blast furnace slag(BFS) is well known for its hardening mechanism in ordinary Portland cement with alkali activation due to its latent hydraulic property. The possibility of using calcium compound as activator for BFS has been investigated in this study. The hydration properties of calcium compound activated BFS binders were explored using heat of hydration, powder X-ray diffraction and compressive strength testing. Heat of hydration results indicate that the hydration heat of BFS is lower than OPC paste by about 50%. And ettringite as hydration product was formed continuously as the calcium sulfate was decreased. The maximum compressive strength of hardened BFS mortar at 28 days is confirmed to be 83% as compared with hardened OPC mortar.

Prediction of Temperature and Moisture Distributions in Hardening Concrete By Using a Hydration Model

  • Park, Ki-Bong
    • Architectural research
    • /
    • v.14 no.4
    • /
    • pp.153-161
    • /
    • 2012
  • This paper presents an integrated procedure to predict the temperature and moisture distributions in hardening concrete considering the effects of temperature and aging. The degree of hydration is employed as a fundamental parameter to evaluate hydro-thermal-mechanical properties of hardening concrete. The temperature history and temperature distribution in hardening concrete is evaluated by combining cement hydration model with three-dimensional finite element thermal analysis. On the other hand, the influences of both self-desiccation and moisture diffusion on variation of relative humidity are considered. The self-desiccation is evaluated by using a semi-empirical expression with desorption isotherm and degree of hydration. The moisture diffusivity is expressed as a function of degree of hydration and current relative humidity. The proposed procedure is verified with experimental results and can be used to evaluate the early-age crack of hardening concrete.

Hydration Analysis of Fine Particle and Old Mortar Attached on the Surface of Recycled Aggregate

  • Ko, Dong-Woo;Choi, Hee-Bok
    • Journal of the Korea Institute of Building Construction
    • /
    • v.12 no.5
    • /
    • pp.460-467
    • /
    • 2012
  • When recycled aggregate with old mortar and particles is used in concrete mixing, such aggregates can affect hydration reaction by promoting or inhibiting it. In this study, the possibility of hydration reaction on old mortar and particle was analyzed. Hydration reaction was carried out in old mortar that is finely crushed by an impact machine in the production of recycled aggregates, and it was found that this did have an impact on the strength development of concrete. Unlike in old cement, the hydration reaction did not progress in the particles, and it had high amounts of silica powder and calcium carbonate. In conclusion, the old mortar can have the influence of improving compressive strength, but the particles can delay the setting time of recycled aggregate concrete.

A Study on the Hydration Heat of Antiwashout Underwater Concrete Using Fly Ash (플라이애쉬를 사용한 수중불분리성 콘크리트의 수화열에 관한 연구)

  • 권중현
    • Journal of Ocean Engineering and Technology
    • /
    • v.14 no.4
    • /
    • pp.30-34
    • /
    • 2000
  • The concretes cast in the sea water would be likely to be rich mix and mass concrete. Therefore it is important to check out the hydration heat of concrete and to reduce it to prevent the concrete from processing the temperature crack. Recently the antiwashout agent is used on underwater concrete for preventing from the segregation of concrete in the water. The experimental studies were done for the combined cement replaced by fly ash 30%unit weight of binder to study on the characteristics of hydration heat of antiwashout underwater concrete, and its characteristic was discussed by comparing on cast in sea water with anther one in air. The present paper showed that the hydration heat concrete replaced by 30%of fly ash was more significantly reduced than the normal concrete. The hydration heat of antiwashout underwater concrete was highter than that of normal concrete, but it was reduced lower than the normal concrete by adding fly ash.

  • PDF

An advanced single-particle model for C3S hydration - validating the statistical independence of model parameters

  • Biernacki, Joseph J.;Gottapu, Manohar
    • Computers and Concrete
    • /
    • v.15 no.6
    • /
    • pp.989-999
    • /
    • 2015
  • An advanced continuum-based multi-physical single particle model was recently introduce for the hydration of tricalcium silicate ($C_3S$). In this model, the dissolution and the precipitation events are modeled as two different yet simultaneous chemical reactions. Product precipitation involves a nucleation and growth mechanism wherein nucleation is assumed to happen only at the surface of the unreacted core and product growth is characterized via a two-step densification mechanism having rapid growth of a low density initial product followed by slow densification. Although this modeling strategy has been shown to nicely mimic all stages of $C_3S$ hydration - dissolution, dormancy (induction), the onset of rapid hydration, the transition to slow hydration and prolonged reaction - the major criticism is that many adjustable parameters are required. If formulated correctly, however, the model parameters are shown here to be statistically independent and significant.

A Study on the Properties of Low-Heat Cement Concrete (저발열시멘트 콘크리트의 기초적 성질에 대한 연구)

  • 문한영;김성수;신화철;강석화
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.10a
    • /
    • pp.57-60
    • /
    • 1997
  • The properties of Low-heat cement are especially in lower heat of hydration than that of other types of cement. In other respect, Low-heat concrete is more advantageous than OPC concrete in chemical resistance, long term age compressive strength, slump loss and resistance to seawater. This paper deals with 28 days age compressive strength and slump loss by elapsed time of mortar and concrete that made with Low-heat cement and 3 types of other cement.

  • PDF