• Title/Summary/Keyword: hydration model

검색결과 209건 처리시간 0.133초

저온하에서의 CFT 시공을 위한 실험적 연구 (A study of Experimental on Construction of Concrete Filled in Steel Tube Column under a Low Temperature)

  • 강용학;이민경;정근호;백민수;김진호;정상진
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2002년도 가을 학술발표회 논문집
    • /
    • pp.489-494
    • /
    • 2002
  • The basic Physical properties, Slump, Slump Flow, Air content, Bleeding, and Settlement of concrete was investigated to test Characteristic of Setting and to evaluate the relation between Model Specimen and Heat of Hydration for construction under Low Temperature (CFT). The objective of this study is to take the partial core after the cementation of Model Specimen, test the compression intensity and analyze the relation to Test Piece.

  • PDF

CFT 기둥의 서중 시공 적용을 위한 기초적 연구 (An Experimental Study on the Construction of CFT Column Over the High Temperature)

  • 이장환;강용학;공민호;정근호;김진호;정상진
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.1029-1034
    • /
    • 2003
  • The basic Physical properties, Slump, Slump Flow, Air content, Bleeding, and Settlement of concrete was investigateed to test Characteristic of Setting and to evaluate the relation between Model Specimen and Heat of hydration for construction Over the High Temperature (CFT). The objective of this study is to take the partial core after the cementation of Model Specimen, test the compression intensity and analyze the relation to Test Piece.

  • PDF

A multiscale creep model as basis for simulation of early-age concrete behavior

  • Pichler, Ch.;Lackner, R.
    • Computers and Concrete
    • /
    • 제5권4호
    • /
    • pp.295-328
    • /
    • 2008
  • A previously published multiscale model for early-age cement-based materials [Pichler, et al.2007. "A multiscale micromechanics model for the autogenous-shrinkage deformation of early-age cement-based materials." Engineering Fracture Mechanics, 74, 34-58] is extended towards upscaling of viscoelastic properties. The obtained model links macroscopic behavior, i.e., creep compliance of concrete samples, to the composition of concrete at finer scales and the (supposedly) intrinsic material properties of distinct phases at these scales. Whereas finer-scale composition (and its history) is accessible through recently developed hydration models for the main clinker phases in ordinary Portland cement (OPC), viscous properties of the creep active constituent at finer scales, i.e., calcium-silicate-hydrates (CSH) are identified from macroscopic creep tests using the proposed multiscale model. The proposed multiscale model is assessed by different concrete creep tests reported in the open literature. Moreover, the model prediction is compared to a commonly used macroscopic creep model, the so-called B3 model.

초고성능 콘크리트의 수화발열 및 역학적 특성 모델 (Models for Hydration Heat Development and Mechanical Properties of Ultra High Performance Concrete)

  • 차수원;김기현;김성욱;박정준;배성근
    • 콘크리트학회논문집
    • /
    • 제22권3호
    • /
    • pp.389-397
    • /
    • 2010
  • 콘크리트는 역학적 성능, 내구성능, 경제성이 우수한 재료이지만 장경간 교량에 적용하기는 쉽지 않은데, 이는 콘크리트의 중량 대비 강도가 낮기 때문이다. 초고성능 콘크리트는 높은 압축강도를 가지며 굵은 골재를 사용하지 않으므로 단면의 크기를 줄일 수 있어, 장경간 교량 바닥판으로 활용이 기대된다. 그러나 초고성능 콘크리트는 재료 특성상 단위결합재량이 많으므로 바닥판 양생과정에서 수화열에 의한 균열이 발생할 수 있다. 이 연구에서는 UHPC 바닥판의 초기재령 균열 위험성을 평가하기 위한 기초 작업을 수행하였다. 먼저 단열온도 상승시험 결과를 바탕으로 2변수 모델과 S자형 함수의 중첩으로 단열온도 상승곡선을 모델링하고, 등가재령의 개념을 도입하여 UHPC의 아레니우스 상수를 결정하였다. 이상의 결과를 실물크기 시험체에 대한 수화발열 측정시험으로 검증하였다. 다음으로 초음파 속도 측정 결과와 하중 재하에 의하여 탄성계수, 인장강도, 압축강도와 같은 UHPC의 역학적 특성을 구하였다.

재령효과를 고려한 미소면 모델을 적용한 매스콘크리트의 균열거동 해석 (Analysis on the Cracking Behavior for Massive Concrete with Age-Dependent Microplane Model)

  • 이윤;김진근;이성태
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 추계 학술발표회 제17권2호
    • /
    • pp.591-594
    • /
    • 2005
  • Concrete structure that has been constructed in real field is on multi-axial stress state condition. After placing of concrete, hydration heat and shrinkage of concrete can cause various stress conditions with respect to the restraint level and condition. So, to predict the early age behavior of concrete structure, multi-axial material model is required and microplane model is acceptable. Recently, many studies have been performed on the microplane model, but the model developed up to now has been related to hardened concrete that material property is constant with concrete age. So, it is inappropriate to apply this model immediately to analyze the early age behavior of concrete. In this study, microplane model that can predict early age behavior of concrete was developed and cracking analysis using that was performed to describe cracking behavior for massive concrete sturucture.

  • PDF

콘크리트 슬래브의 소성수축균열 해석모델 (A Numerical Model for Plastic Shrinkage Cracking of Concrete Slab)

  • 곽효경;하수준
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2005년도 춘계 학술발표회 논문집
    • /
    • pp.448-455
    • /
    • 2005
  • In this paper, an analytical model for estimation of the time at which the concrete surface begins to dry is introduced to predict whether or not plastic shrinkage cracks occur. First of all, the validity of a consolidation model for bleeding of cement paste proposed by Tan et al. is verified by comparing the analytical results with the experimental results, and used to evaluate the rate and amount of bleed water of concrete. Also an analytical model for evaporation of bleed water which considers the effect of the temperature variation of concrete surface due to hydration heat on the evaporation rate is proposed, and the experimental and analytical results are then compared to verify the validity of the introduced model. In advance, the time at which the concrete surface begins to dry is estimated using above two analytical models, and compared with the experimental results about the time at which plastic shrinkage cracks occur. From the comparison, it is verified that the proposed model can predict the occurrence of plastic shrinkage cracking with comparative precision.

  • PDF

응력이완을 고려한 초기재령 콘크리트의 거동해석 (Analysis of Early-age Concrete Behavior considering Stress Relaxation)

  • 조호진;박상순;송하원;변근주
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 가을 학술발표회 논문집
    • /
    • pp.641-646
    • /
    • 2001
  • In early-age concrete, volumetric deformations due to thermal expansion and moisture transfer are restrained by various boundary conditions, and then restraint stresses occur in proportion to developed stiffness. With increase of the age, these stresses are gradually relieved by significant relaxation behavior of early-age concrete. Therefore, it is necessary to consider the stress relaxation in order to analyze the behavior of early-age concrete more accurately. In this paper, we propose a unified algorithm which combines a relaxation model with hydration model, heat conduction model, micropore structure formation model, moisture diffusion model and mechanical properties development model and develop a finite element program based on the algorithm. The program is applied to evaluate stress development if a temperature-stress test machine (TSTM) specimen and a massive concrete structure, and then validity of the program is discussed and evaluated.

  • PDF

균열을 갖는 초기재령 콘크리트의 염화물 침투 해석 (Chloride-Penetration Analysis in Cracked Early-Age Concrete)

  • 송하원;박상순;변근주
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 가을 학술발표회 논문집
    • /
    • pp.635-640
    • /
    • 2001
  • In this study, a mathematical model is established for prediction of chloride penetration in unsaturated cracked early-age concrete. The model is combined with models for thermo-hygro dynamic coupling of cement hydration, moisture transport and micro-structure development. Chloride permeability and water permeability at cracked early-age concrete specimens are evaluated using a rapid chloride permeability test and a low-pressure water permeability test, respectively. Then, a homogenization technique is introduced into the model to determine equivalent diffusion coefficient and equivalent Permeation coefficient. Increased chloride transport due to cracks at the specimen could be predicted fairly well by characterizing the cracks using proposed model. Proposed model is verified by comparing diffusion analysis results with test results.

  • PDF

반응표면기법에 의한 고분자전해질형 연료전지 시스템의 최적화 (Optimization of PEM Fuel Cell System Using a RSM)

  • 현동길;김진완;남양해;닝천;김영배
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회B
    • /
    • pp.3140-3141
    • /
    • 2008
  • The output power efficiency of the fuel cell system depends on the demanded current, stack temperature, air excess ratio, hydrogen excess ratio and inlet air humidity. Thus, it is necessary to determine the optimal operation condition for maximum power efficiency. In this paper, we developed a dynamic model of fuel cell system which contains mass flow model, diffusivity gas layer model, membrane hydration and electrochemistry model. In order to determine the maximum output power and minimum use of hydrogen in a certain power condition, response surface methodology (RSM) optimization based on the proposed PEMFC stack model is presented. The results provide an effective method to optimize the operation condition under varied situations.

  • PDF

Early-age thermal analysis and strain monitoring of massive concrete structures

  • Geng, Yan;Li, Xiongyan;Xue, Suduo;Li, Jinguang;Song, Yanjie
    • Computers and Concrete
    • /
    • 제21권3호
    • /
    • pp.279-289
    • /
    • 2018
  • Hydration heat and thermal induced cracking have always been a fatal problem for massive concrete structures. In order to study a massive reinforced concrete wall of a storage tank for liquefied natural gas (LNG) during its construction, two mock-ups of $0.8m{\times}0.8m{\times}0.8m$ without and with metal corrugated pipes were designed based on the actual wall construction plan. Temperature distribution and strain development of both mock-ups were measured and compared inside and on the surface of them. Meanwhile, time-dependent thermal and mechanical properties of the concrete were tested standardly and introduced into the finite-element (FE) software with a proposed hydration degree model. According to the comparison results, the FE simulation of temperature field agreed well with the measured data. Besides, the maximum temperature rise was slightly higher and the shrinkage was generally larger in the mock-up without pipes, indicating that corrugated pipes could reduce concrete temperature and decrease shrinkage of surrounding concrete. In addition, the cooling rate decreased approximately linearly with the reduction of heat transfer coefficient h, implying that a target cooling curve can be achieved by calculating a desired coefficient h. Moreover, the maximum cooling rate did not necessarily decrease with the extension of demoulding time. It is better to remove the formwork at least after 116 hours after concrete casting, which promises lower risk of thermal cracking of early-age concrete.