• Title/Summary/Keyword: hydration energy

Search Result 184, Processing Time 0.025 seconds

Evaluation of thermal-hydro-mechanical behavior of bentonite buffer under heating-hydration condition at disposal hole (처분공 가열-수화 조건에서 벤토나이트 완충재의 열-수리-역학적 거동 특성 평가)

  • Yohan Cha;Changsoo Lee;Jin-Seop Kim;Minhyeong Lee
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.25 no.2
    • /
    • pp.175-186
    • /
    • 2023
  • The buffer materials in disposal hole are exposed to the decay heat from spent nuclear fuels and groundwater inflow through adjacent rockmass. Since understanding of thermal-hydro-mechanical-chemical (T-H-M-C) interaction in buffer material is crucial for predicting their long-term performance and safety of disposal repository, it is necessary to investigate the heating-hydration characteristics and consequent T-H-M-C behavior of the buffer materials under disposal conditions considering geochemical factors. In response, the Korea Atomic Energy Research Institute developed a laboratory-scale 'Lab.THMC' experiment system, which characterizes the T-H-M behavior of buffer materials under different geochemical conditions by analyzing heating-hydration process and stress changes. This technical report introduces the detail design of the Lab.THMC system, summarizes preliminary experimental results, and outlines future research plans.

Determination of Energy and Time Requirement for Cooking Pigeon Pea (Cajanus cajan)

  • Akinoso, Rahman;Oladeji, Ojeronke Dewum
    • Journal of Biosystems Engineering
    • /
    • v.42 no.1
    • /
    • pp.56-61
    • /
    • 2017
  • Purpose: High energy requirement and long cooking time are limiting consumption of pigeon pea (Cajanus cajan), a nutritious food. This study was performed to estimate energy and time demand by different methods of cooking pigeon pea. Methods: Pigeon pea (150 g) was soaked in 2.0 L of water at ambient temperature ($29{\pm} 2^{\circ}C$) to determine hydration behavior. Cooking experiments were conducted using aluminum and pressure-cooking pots. Efficiency of cooking was evaluated using four types of cooking appliances (kerosene, liquefied petroleum gas (LPG), electric, and charcoal stoves). Normal (continuous heating until the food was satisfactorily cooked) and control (controlling the energy input to closely match the actual energy required) cooking were conducted. Energy requirement and duration of cooking were determined using standard procedures. Results: Soaking increased moisture content from 11.99 to 30.01% in 90 min, while water absorption rate decreased with soaking duration. In cooking 150 g of pigeon pea using kerosene stove, presoaked normal pressure-pot cooking method consumed the least energy (10 800 kJ) and time (205 min), while unsoaked normal cooking consumed the highest energy (18 450 kJ) and time (336 min). Using LPG stove, unsoaked normal cooking method required the highest energy (52 470 kJ), while presoaked control pressure-pot required the least energy (14 405 kJ). For electric stove, the lowest energy (15 560 kJ) and shortest duration (105 min) were recorded during control cooking of presoaked sample in the pressure-pot. Conclusions: Control cooking was not practicable using charcoal stove. Generally, kerosene stove consumed the least energy, while electric stove was found to have the shortest duration of cooking.

Behaviour of Uranyl Phosphate Containing Solid Waste During Thermal Treatment for the Purpose of Sentencing and Immobilisation: Preliminary Results

  • Foster, Richard Ian;Sung, Hyun-Hee;Kim, Kwang-Wook;Lee, Keunyoung
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.18 no.3
    • /
    • pp.407-414
    • /
    • 2020
  • Thermal decomposition of the uranyl phosphate mineral phase meta-ankoleite (KUO2PO4·3H2O) has been considered in relation to high temperature thermal sintering for the immobilisation of a uranyl phosphate containing waste. Meta-ankoleite thermal decomposition was studied across the temperature range 25 - 1200℃ under an inert N2 atmosphere at 1 atm. It is shown that the meta-ankoleite mineral phase undergoes a double de-hydration event at 56.90 and 125.85℃. Subsequently, synthetically produced pure meta-ankoleite remains stable until at least 1150℃ exhibiting no apparent phase changes. In contrast, when present in a mixed waste the meta-ankoleite phase is not identifiable after thermal treatment indicating incorporation within the bulk waste either as an amorphous phase and/or as uranium oxide. Visual inspection of the waste post thermal treatment showed evidence of self-sintering owing to the presence of glass former materials, namely, silica (SiO2) and antimony(V) oxide (Sb2O5). Therefore, incorporation of the uranium phase into the waste as part of waste sentencing and immobilisation via high temperature sintering for the purpose of long-term disposal is deemed feasible.

Molecular Dynamics Free Energy Simulation Study to Rationalize the Relative Activities of PPAR δ Agonists

  • Lee, Woo-Jin;Park, Hwang-Seo;Lee, Sangyoub
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.2
    • /
    • pp.363-371
    • /
    • 2008
  • As a computational method for the discovery of the effective agonists for PPARd, we address the usefulness of molecular dynamics free energy (MDFE) simulation with explicit solvent in terms of the accuracy and the computing cost. For this purpose, we establish an efficient computational protocol of thermodynamic integration (TI) that is superior to free energy perturbation (FEP) method in parallel computing environment. Using this protocol, the relative binding affinities of GW501516 and its derivatives for PPARd are calculated. The accuracy of our protocol was evaluated in two steps. First, we devise a thermodynamic cycle to calculate the absolute and relative hydration free energies of test molecules. This allows a self-consistent check for the accuracy of the calculation protocol. Second, the calculated relative binding affinities of the selected ligands are compared with experimental IC50 values. The average deviation of the calculated binding free energies from the experimental results amounts at the most to 1 kcal/mol. The computational efficiency of current protocol is also assessed by comparing its execution times with those of the sequential version of the TI protocol. The results show that the calculation can be accelerated by 4 times when compared to the sequential run. Based on the calculations with the parallel computational protocol, a new potential agonist of GW501516 derivative is proposed.

The Influence of FGD Gypsum Fabricated from Limestone Sludge on Cement Properties

  • Seo, Sung Kwan;Chu, Yong Sik;Shim, Kwang Bo;Lee, Jong Kyu;Song, Hun
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.6
    • /
    • pp.676-681
    • /
    • 2016
  • For the purpose of reducing the amount of limestone, which is used as a desulfurization agent to absorbing $SO_X$ gas in thermal power plants, and to recycle limestone sludge generated from a steel mill, limestone sludge was utilized as a desulfurization agent. In this study, cement, made of flue gas desulfurization (FGD) gypsum obtained in a desulfurization process using limestone sludge, was manufactured then, experiments were conducted to identify the physical properties of the paste and mortar using the cement. The results of the crystal phase and microstructure analyses showed that the hydration product of the manufactured cement was similar to that of ordinary Portland cement. No significant decline of workability or compressive strength was observed for any of the specimens. From the results of the experiment, it was determined that FGD gypsum manufactured from limestone sludge did not influence the physical properties of the cement also, quality change did not occur with the use of limestone sludge in the flue gas desulfurization process.

A Study on The Control of Humidification and Dew Condensation by On/Off Control (On/Off 제어에 의한 습도와 결로의 제어에 관한 연구)

  • Park, Dea-Heum;Kim, Du-Hee;Kim, Kyoung-Hoon;Jung, Young-Guan
    • Journal of Hydrogen and New Energy
    • /
    • v.22 no.6
    • /
    • pp.835-841
    • /
    • 2011
  • The humidification is essential for performance enhancement of the electrolysis of PEMFC because proton conductivity depends on hydration of the proton exchange membrane. In this study, the humidification experiment did about On/Off control the humidification and dew condensation for PEMFC by using of the membrane humidifiers. As the results, it was possible to approximation control of the humidity by using of the solenoid valve On/Off control on the membrane humidifier. Also the problem on the dew condensation was resolved by approximation humidity control through solenoid valve On/Off control and the removal of the dew condensation in the flow channel was verified through visualization experiment.

The Characterization of Crosslinked SPEEK Based Ion Exchange Membranes Prepared by EB Irradiation Method (전자선을 이용해 가교된 SPEEK 기본 물질로 하는 이온 교환막의 특성 분석)

  • Song, Ju-Myung;Shin, Junhwa;Sohn, Joon-Yong;Nho, Young-Chang
    • Journal of Radiation Industry
    • /
    • v.5 no.2
    • /
    • pp.151-157
    • /
    • 2011
  • Crosslinked SPEEK/PVDF membrane were prepared by EB radiation method with various contents of PVDF. The prepared membranes were subjected to a comparative study of proton exchange membranes for fuel cell appreciations. The crosslinked SPEEK/PVDF membranes were characterized by using DMA, DSC and SAXS. The DMA data indicate that the ionic modulus values and cluster $T_g$ decrease with increasing PVDF content. Thus, it was suggested that the number of clustering in the crosslinked membranes can be reduced with increasing PVDF content. The DSC results were shown that the degree of crystalline of the membrane increased with increasing PVDF content. The morphology of the crosslinkied membranes was shown that with increasing PVDF content, the number of crystalline domain of the SPEEK/PVDF membranes increased but ionic aggregation of the membranes decreased. The water uptake behavior, ionic exchange capacity (IEC) and proton conductivity were decreased with increasing PVDF content. The overall findings suggest that the crosslinked membranes offer the possibility for improving the performance of PEMFC, provided that the membranes have thermal and hydration stability.

Hydrogen Bonding Effect on γ-Ray Irradiated Poly(vinyl alcohol) Hydrogels in Different Drying Conditions

  • Gwon, Hui-Jeong;Jo, Sun Young;Park, Eun Ji;Shin, Young Min;Choi, Jong-Bae;Park, Jong-Seok;Lim, Youn-Mook;Nho, Young-Chang;Kang, Phil Hyun
    • Journal of Radiation Industry
    • /
    • v.6 no.1
    • /
    • pp.89-94
    • /
    • 2012
  • Three-dimensional network hydrogels were prepared by ${\gamma}$-irradiation of aqueous solutions of poly(vinyl alcohol) (PVA) and glycerol (Gly). Oven-drying was used to measure the gel fraction (G), hydration (H) or swelling behavior (S) of the prepared hydrogels. This study made a hypothesis that hydrogen bonds due to addition of glycerol and change of dry states such as freeze-drying (FD), room-drying (RD) and oven-drying (OD) acts on the G, H, and S. Interesting results on the hydrogen bonding effect in the prepared hydrogels are monitored at different drying conditions. The FD samples have a higher G values with increase in glycerol content as compared with the OD and RD samples. The formation of strong hydrogen bonding network among Gly molecules and hydrogel matrix was considered as the main driving force, resulting in the changes in the G, H, and S of the hydrogels under different drying conditions.

Numerical Analysis of Heat Transfer in Packed Bed of $Ca(OH)_2/CaO$ for Chemical Heat Pump ($Ca(OH)_2/CaO$계 화학 열펌프에 있어서 고체 반응층의 전열해석)

  • Kim, Jong-Shik
    • Solar Energy
    • /
    • v.17 no.1
    • /
    • pp.67-77
    • /
    • 1997
  • To develop chemical heat pump of higher energy density and efficiency heat-release characteristics accompanied by exothermic hydration reaction in packed bed, $Ca(OH)_2/CaO$ reactor, are examined in a lab-scale unit. We have studied the enhancement effect of inserted fins in cylindical packed bed reactor. The results obtained by numerical analysis about profiles of temperature, completion time of reaction and exothermic heat amount released from the reactor read the insertion of fins in reactor can reduce the reaction completion time by half and the rate of thermochemical reaction depends on the temperature and concentration, and it is also governed by the boundary conditions and the rate of heat transfer in the particle packed bed.

  • PDF

Analysis of Characteristics of Slurry and Thermal Insulation Materials Using Hauyne Cement

  • Kim, Tae Yeon;Jo, Ki Sic;Chu, Yong Sik
    • Journal of the Korean Ceramic Society
    • /
    • v.56 no.5
    • /
    • pp.468-473
    • /
    • 2019
  • This study focused on manufacturing an inorganic insulation material set with various amounts of calcium-sulfoaluminate (CSA) (hauyne) content for enhancing both workability (demolding, handling) and the high thermal insulating property. To carry out the experiment, the amounts of CSA utilized were 5%, 10%, 15%, and 20%, with anhydrous gypsum added in equal proportion to produce a stable formation. As the content of CSA increased, a sinking phenomenon occurred because of the hydration reaction from the slurry, so it was difficult to utilize a retarder normally used in the cement manufacturing process. However, an RCOOM surfactant was able to solve the local clumping problem from cement and CSA and obtain a rapid retarding effect, so it was included in this process at 0.3%. Furthermore, the cement fineness was not 7000 ㎠/g but rather 3300 ~ 4000 ㎠/g to prevent a rapid temperature increase in the slurry. The specific gravity of the sample manufactured with 20% CSA was approximately 0.11 g/㎤, and its thermal conductivity was 0.041 W/m·K, providing an excellent insulating property.