• Title/Summary/Keyword: hybrid wall

Search Result 236, Processing Time 0.027 seconds

Algorithm for Autonomous Wall-Following of Wheeled Mobile Robots Using Reference Motion Synthesis and Generation of Hybrid System (하이브리드 시스템의 기준동작 구성과 생성에 의한 차륜형 이동로봇의 자율 벽면-주행 알고리즘)

  • Lim, Mee-Seub;Im, Jun-Hong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.7
    • /
    • pp.586-593
    • /
    • 2000
  • In this paper we propose a new approach to the autonomous wall-following of wheeled mobile robots using hybrid system reference motion synthesis and generation. The hybrid system approach is in-troduced to the motion control of nonholonomic mobile robots for the indoor navigation problems. In the dis-crete event system the discrete states are defined by the user-defined constraints and the reference mo-tion commands are specified in the abstracted motions. The hybrid control system applied for the non-holonomic mobile robots can combine the motion planning and autonomous navigation with obstacle avoid-ance for the indoor navigation problem. Simulation results show that hybrid system approach is an effective method for the autonomous navigation in indoor environments.

  • PDF

Internal Flow Dynamics and Regression Rate in Hybrid Rocket Combustion

  • Lee, Changjin
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.13 no.4
    • /
    • pp.507-514
    • /
    • 2012
  • The present study is the analyses of what has been attempted and what was understood in terms of improving the regression rate and enlarging the basic understanding of internal flow dynamics. The first part is mainly intended to assess the role of helical grain configuration in the regression rate inside the hybrid rocket motor. To improve the regression rate, a combination of swirl (which is an active method) and helical grain (which is a passive method) was adopted. The second part is devoted to the internal flow dynamics of hybrid rocket combustion. A large eddy simulation was also performed with an objective of understanding the origin of isolated surface roughness patterns seen in several recent experiments. Several turbulent statistics and correlations indicate that the wall injection drastically changes the characteristics of the near-wall turbulence. Contours of instantaneous streamwise velocity in the plane close to the wall clearly show that the structural feature has been significantly altered by the application of wall injection, which is reminiscent of the isolated roughness patterns found in several experiments.

Preliminary design and structural responses of typical hybrid wind tower made of ultra high performance cementitious composites

  • Wu, Xiangguo;Yang, Jing;Mpalla, Issa B.
    • Structural Engineering and Mechanics
    • /
    • v.48 no.6
    • /
    • pp.791-807
    • /
    • 2013
  • Ultra High Performance Cementitious Composites with compressive strength 200MPa (UHPCC-200) is proposed for the structural design of super high hybrid wind turbine tower to gain durability, ductility and high strength design objectives. The minimal wall thickness is analyzed using basic bending and compression theory and is modified by a toque influence coefficient. Two cases of wall thickness combination of middle and bottom segment including varied ratio and constant ratio are considered within typical wall thickness dimension. Using nonlinear finite element analysis, the effects of wall thickness combinations with varied and constant ratio and prestress on the structural stress and lateral displacement are calculated and analyzed. The design limitation of the segmental wall thickness combinations is recommended.

Experimental studies into a new type of hybrid outrigger system with metal dampers

  • Wang, A.J.
    • Structural Engineering and Mechanics
    • /
    • v.64 no.2
    • /
    • pp.183-194
    • /
    • 2017
  • This paper presents the experimental investigation into a new type of steel-concrete hybrid outrigger system developed for the high-rise building structure. The steel truss is embedded into the reinforced concrete outrigger wall, and both the steel truss and concrete outrigger wall work compositely to enhance the overall structural performance of the tower structures under extreme loads. Meanwhile, metal dampers of low-yield steel material were also adopted as a 'fuse' device between the hybrid outrigger and the column. The damper is engineered to be 'scarified' and yielded first under moderate to severe earthquakes in order to protect the structural integrity of important structural components of the hybrid outrigger system. As such, not brittle failure is likely to happen due to the severe cracking in the concrete outrigger wall. A comprehensive experimental research program was conducted into the structural performance of this new type of hybrid outrigger system. Studies on both the key component and overall system tests were conducted, which reveal the detailed structural response under various levels of applied static and cyclic loads. It was demonstrated that both the steel bracing and concrete outrigger wall are able to work compositely with the low-yield steel damper and exhibits both good load carrying capacities and energy dispersing performance through the test program. It has the potential to be applied and enhance the overall structural performance of the high-rise structures over 300 m under extreme levels of loads.

A Study on the Installation Method of PRB by Controlling Groundwater Flow in Hybrid Funnel and Gate (하이브리드 Funnel and Gate 지하수 흐름제어를 통한 반응벽체 설치 연구)

  • Tae Yeong Kim;Jeong Yong Cheon;Myeong Jae Yi;Yong Hoon Cha;Seon Ho Shin;Meong Do Jang;Jeongwoo Kim
    • Journal of Soil and Groundwater Environment
    • /
    • v.28 no.3
    • /
    • pp.1-11
    • /
    • 2023
  • Permeable reactive barrier (PRB) is a prominent in-situ remedial option for cleanup of contaminated groundwater and has been gaining increasing popularity in recent years. Funnel-and-gate systems, comprised of two side wings of impermeable walls and a central gate wall, are frequently implemented in many sites, but often suffers from bypassing of groundwater due to the progressive clogging of the gate wall over extended period of time. This study investigated technical feasibility of a hybrid funnel-and-gate system designed to address the flow deterioration in the gate wall. The key attribute of the proposed hybrid system is the operation of drainage units at the barrier walls and rear end of the gate wall. A conceptual modeling with MODFLOW indicated the groundwater inside the barrier was maintained at appropriate level to be guided toward the gate wall, yielding constant discharging of groundwater from the gate.

Seismic Behavior of Steel Coupling Beam-Wall Connection with Pane Shear Failure (패널파괴형 철골 커플링 보-벽체 접합부의 내진거동)

  • Park Wan-Shin;Han Min-Ki;Kim Sun-Woo;Hwang Sun-Kyung;Yang Il-Seung;Yun Hyun-Do
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.431-434
    • /
    • 2005
  • In the past decade, various experimental programmes were undertaken to address the lack of information on the interaction between steel coupling beams and reinforced concrete shear wall in a hybrid coupled shear wall system. In this paper, the seismic performance of steel coupling beam-wall connections in a hybrid coupled shear wall system is examined through results of an experimental research programme where three 2/3-scale specimens were tested under cyclic loading. The test variables included the reinforcement details that confer a ductile behaviour on the steel coupling beam-wall connection, i.e., the face bearing plates and the horizontal ties in the panel region of steel coupling beam-wall connections. Panel shear strength reflects enhancement achieved through mobilization of the reinforced concrete panel using face bearing plates and/or horizontal ties in the panel region of steel coupling beam-wall connections.

  • PDF

A Hybrid Genetic Algorithms for Inverse Radiation Analysis (역복사 해석을 위한 혼합형 유전알고리즘에 관한 연구)

  • Kim, Ki-Wan;Baek, Seung-Wook;Kim, Man-Young
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1639-1644
    • /
    • 2003
  • A hybrid genetic algorithm is developed for estimating the wall emissivities for an absorbing, emitting, and scattering media in a two-dimensional irregular geometry with diffusely emitting and reflecting opaque boundaries by minimizing an objective function, which is expressed by the sum of square errors between estimated and measured temperatures at only four data positions. The finite-volume method was employed to solve the radiative transfer equation for a two-dimensional irregular geometry. The results show that a developed hybrid genetic algorithms reduce the effect of genetic parameters on the performance of genetic algorithm and that the wall emissivities are estimated accurately without measurement errors.

  • PDF

Energy based design of a novel timber-steel building

  • Goertz, Caleb;Mollaioli, Fabrizio;Tesfamariam, Solomon
    • Earthquakes and Structures
    • /
    • v.15 no.4
    • /
    • pp.351-360
    • /
    • 2018
  • Energy-based methodology is utilized to design novel timber-steel hybrid core wall system. The timber-steel core wall system consists of cross laminated timber (CLT), steel columns, angled brackets and t-stub connections. The CLT wall panels are stiff and strong, and ductility is provided through the steel t-stub connections. The structural system was modelled in SAP2000 finite element program. The hybrid system is explained in detail and validated using first principles. To evaluate performance of the hybrid core system, a 7-story building was designed using both forced-based design and energy based design (EBD) approaches. Performance of the structure was evaluated using 10 earthquakes records selected for 2500 return period and seismicity of Vancouver. The results clearly served as a good example of the benefits of EBD compared to conventional forced based design approaches.

Towards achieving the desired seismic performance for hybrid coupled structural walls

  • Hung, Chung-Chan;Lu, Wei-Ting
    • Earthquakes and Structures
    • /
    • v.9 no.6
    • /
    • pp.1251-1272
    • /
    • 2015
  • It is widely recognized that the preferred yielding mechanism for a hybrid coupled wall structure is that all coupling beams over the height of the structure yield in shear prior to formation of plastic hinges in structural walls. The objective of the study is to provide feasible approaches that are able to promote the preferred seismic performance of hybrid coupled walls. A new design methodology is suggested for this purpose. The coupling ratio, which represents the contribution of coupling beams to the resistance of system overturning moment, is employed as a fundamental design parameter. A series of nonlinear time history analyses on various representative hybrid coupled walls are carried out to examine the adequacy of the design methodology. While the proposed design method is shown to be able to facilitate the desired yielding mechanism in hybrid coupled walls, it is also able to reduce the adverse effects caused by the current design guidelines on the structural design and performance. Furthermore, the analysis results reveal that the state-of-the-art coupled wall design guidelines could produce a coupled wall structure failing to adequately exhaust the energy dissipation capacity of coupling beams before walls yield.

A Experimental Study on Structural Behavior of Hybrid Precast Concrete Panel (복합 프리캐스트 콘크리트 패널의 구조 거동에 대한 실험적 연구)

  • Lee, Sang-Sup;Park, Keum-Sung
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.9
    • /
    • pp.11-18
    • /
    • 2018
  • As the height of the modular buildings increases, their stability becomes more and more dependent on the core. All traditional construction methods in structural concrete and steel can be utilized for cores in modular buildings but a core system with dry connection is more desirable to complete a greater degree of factory finish and faster erection of modular buildings. In order to do that, the hybrid PC(precast concrete) panel, which has a pair of C-shaped steel beams combined at the top and bottom of a concrete wall, was developed, In this study the cyclic lateral loading test on the hybrid PC panel is carried out and the panel configurations are examined to enhance the structural performance in comparison with the RC wall. Experimental results show that the strength of hybrid PC panel is about 70% of thar ot RC wall and the anchorage of vertical reinforcing bar welded to C-shaped steel beam needs to be improved.