• Title/Summary/Keyword: hybrid thermal loads

Search Result 6, Processing Time 0.018 seconds

Ozonization of SWCNTs on thermal/mechanical properties of basalt fiber-reinforced composites

  • Kim, Seong Hwang;Heo, Young-Jung;Park, Soo-Jin
    • Steel and Composite Structures
    • /
    • v.31 no.5
    • /
    • pp.517-527
    • /
    • 2019
  • To move forward in large steps rather than in small increments, the community would benefit from a systematic and comprehensive database of multi-scale composites and measured properties, driven by comprehensive studies with a full range of types of fiber-reinforced polymers. The multi-scale hierarchy is a promising chemical approach that provides superior performance in synergistically integrated microstructured fibers and nanostructured materials in composite applications. Achieving high-efficiency thermal conductivity and mechanical properties with a simple surface treatment on single-walled carbon nanotubes (SWCNTs) is important for multi-scale composites. The main purpose of the project is to introduce ozone-treated SWCNTs between an epoxy matrix and basalt fibers to improve mechanical properties and thermal conductivity by enhancing dispersion and interfacial adhesion. The obvious advantage of this approach is that it is much more effective than the conventional approach at improving the thermal conductivity and mechanical properties of materials under an equivalent load, and shows particularly significant improvement for high loads. Such an effort could accelerate the conversion of multi-scale composites into high performance materials and provide more rational guidance and fundamental understanding towards realizing the theoretical limits of thermal and mechanical properties.

A Study on the Efficiency of Fuel Cells for Marine Generators (선박 발전기용 연료전지 시스템의 효율에 관한 연구)

  • Lee, Jung-Hee;Kwak, Jae-Seob;Kim, Kwang-Heui
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.5
    • /
    • pp.52-57
    • /
    • 2018
  • Most current ships have adopted on-board diesel generators to produce electricity, but the overall efficiency of equipment is down to about 50% due to thermal losses from operations such as exhaust gas, jacket water cooler, scavenge air cooler, etc. Recently, fuel cells have been highlighted as a promising technology to reduce the effect on the environment and have a higher efficiency. Therefore, this paper suggested a solid oxide fuel cell (SOFC)-gas turbine (GT) using waste heat from a SOFC and SOFC-GT-steam turbine (ST) with Rankine cycle. To compare both configurations, the fuel flow rate, current density, cell voltage, electrical power, and overall efficiency were evaluated at different operating loads. The overall efficiency of both SOFC hybrid systems was higher than the conventional system.

A Study on Strengthening of Steel Girder Bridge using Multi-Stepwise Thermal Prestressing Method (다단계 온도프리스트레싱을 이용한 강거더교의 보강에 관한 연구)

  • Kim, Sang Hyo;Kim, Jun Hwan;Ahn, Jin Hee
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.6
    • /
    • pp.717-726
    • /
    • 2006
  • Traditional external post-tensioning method using either steel bars or tendons is commonly used as a retrofitting method for steel composite bridges. However, the method has some disadvantages such as stress concentration at anchorages and inefficient load-carrying capability of live loads. Multi-stepwise prestressing method using thermal expanded coverplate is a newly proposed prestressing method, which was originally developed for prestressing steel structures. A new retrofitting method for steel girder bridges founded on a simple concept of thermal expansion and contraction of cover plate, the method is a hybrid of and combines the advantages of external post-tensioning and thermal prestressing. In this paper, basic concepts of the method are presented and an illustrative experiment is introduced. From actual experimental data, the thermal prestressing effect was substantiated and the FEM approach for its analysis was verified. The retrofitting effects ofa single-span bridge were analyzed and the feasibility of the developed method was examined.

Dynamic response of functionally gradient austenitic-ferritic steel composite panels under thermo-mechanical loadings

  • Isavand, S.;Bodaghi, M.;Shakeri, M.;Mohandesi, J. Aghazadeh
    • Steel and Composite Structures
    • /
    • v.18 no.1
    • /
    • pp.1-28
    • /
    • 2015
  • In this paper, the dynamic response of functionally gradient steel (FGS) composite cylindrical panels in steady-state thermal environments subjected to impulsive loads is investigated for the first time. FGSs composed of graded ferritic and austenitic regions together with bainite and martensite intermediate layers are analyzed. Thermo-mechanical material properties of FGS composites are predicted according to the microhardness profile of FGS composites and approximated with appropriate functions. Based on the three-dimensional theory of thermo-elasticity, the governing equations of motionare derived in spatial and time domains. These equations are solved using the hybrid Fourier series expansion-Galerkin finite element method-Newmark approach for simply supported boundary conditions. The present solution is then applied to the thermo-elastic dynamic analysis of cylindrical panels with three different arrangements of material compositions of FGSs including ${\alpha}{\beta}{\gamma}M{\gamma}$, ${\alpha}{\beta}{\gamma}{\beta}{\alpha}$ and ${\gamma}{\beta}{\alpha}{\beta}{\gamma}$ composites. Benchmark results on the displacement and stress time-histories of FGS cylindrical panels in thermal environments under various pulse loads are presented and discussed in detail. Due to the absence of similar results in the specialized literature, this paper is likely to fill a gap in the state of the art of this problem, and provide pertinent results that are instrumental in the design of FGS structures under time-dependent mechanical loadings.

An Experimental Study on Thermal Prestressing Method for Strengthening Concrete Bridge (콘크리트 교량의 보강을 위한 온도 프리스트레싱 공법의 실험적 연구)

  • Ahn, Jin-Hee;Kim, Jun-Hwan;Choi, Kyu-Tae;Kim, Sang-Hyo
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.4
    • /
    • pp.483-490
    • /
    • 2007
  • Traditional external post-tensioning method using either steel bars or tendons is commonly used as a retrofitting method for concrete bridges. However, the external post-tensioning method has some disadvantages such as stress concentration at anchorages and inefficient load carrying capability regarding live loads. Thermal prestressing method is a newly proposed method for strengthening and rehabilitation of concrete girder bridges. Founded on a simple concept of thermal expansion and contraction of steel, the method is a hybrid method of external post-tensioning and steel plate bonding, combining the merits of two methods. In this paper, basic concepts of the method are presented and an illustrative experiment is introduced. From actual experimental data, the thermal prestressing effect is substantiated and the FEM approach for its analysis is verified.

A Study About Effects of Changed Load on Dynamic·Combustion Characteristics of Linear Engine (부하 변화에 따른 리니어엔진의 동적·연소특성에 대한 연구)

  • Lee, Jaewan;Lim, Ocktaeck;Kim, Gangchul
    • Journal of Hydrogen and New Energy
    • /
    • v.24 no.3
    • /
    • pp.206-215
    • /
    • 2013
  • A linear engine has advantages in terms of volume and weight, because there are no rotating parts. Thus, it is considered that linear engines might be suitable in hybrid vehicles. However, the linear engine has challenges in terms of the engine ignition timing and efficiency, so the engine has not been commercialized yet. In this study, the dynamic and combustion characteristics of the linear engine might be specified by various loads which are changed by conductance. The engine used in this experiment consists of two combustion chambers, four compressors, two linear alternators and a mover with a piston head and magnets. The way fuel is supplied in the experiment is by propane fuel being mixed with air in the carburetor, then being delivered into combustion cylinders via compressors. In the experiment, conductance is altered from 0.04 to 0.16mho, and the ignition timing is ahead by just 5.0mm from the maximum stroke. As a result of the experiment, frequency, stroke, input calories and maximum pressure are decreased when the conductance is increased. Meanwhile, IMEP, generation efficiency and electric power are increased when the conductance is increased. Therefore, it might confirm that high conductance generates more efficient electric power, but that thermal efficiency is the highest in the state of 0.08mho.