• Title/Summary/Keyword: hybrid techniques

Search Result 746, Processing Time 0.033 seconds

A Study on Hybrid Split-Spectrum Processing Technique for Enhanced Reliability in Ultrasonic Signal Analysis (초음파 신호 해석의 신뢰도 개선을 위한 하이브리드 스플릿-스펙트럼 신호 처리 기술에 관한 연구)

  • Huh, H.;Koo, K.M.;Kim, G.J.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.16 no.1
    • /
    • pp.1-9
    • /
    • 1996
  • Many signal-processing techniques have been found to be useful in ultrasonic and nondestructive evaluation. Among the most popular techniques are signal averaging, spatial compounding, matched filters and homomorphic processing. One of the significant new process is split-spectrum processing(SSP), which can be equally useful in signal-to-noise ratio(SNR) improvement and grain characterization in several specimens. The purpose of this paper is to explore the utility of SSP in ultrasonic NDE. A wide variety of engineering problems are reviewed, and suggestions for implementation of the technique are provided. SSP uses the frequency-dependent response of the interfering coherent noise produced by unresolvable scatters in the resolution range cell of a transducer. It is implemented by splitting the frequency spectrum of the received signal by using gaussian bandpass filter. The theoretical basis for the potential of SSP for grain characterization in SUS 304 material is discussed, and some experimental evidence for the feasibility of the approach is presented. Results of SNR enhancement in signals obtained from real four samples of SUS 304. The influence of various processing parameters on the performance of the processing technique is also discussed. The minimization algorithm, which provides an excellent SNR enhancement when used either in conjunction with other SSP algorithms like polarity-check or by itself, is also presented.

  • PDF

Study on the Optimal Selection of Rotor Track and Balance Parameters using Non-linear Response Models and Genetic Algorithm (로터 트랙 발란스(RTB) 파라미터 최적화를 위한 비선형 모델링 및 GA 기법 적용 연구)

  • Lee, Seong Han;Kim, Chang Joo;Jung, Sung Nam;Yu, Young Hyun;Kim, Oe Cheul
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.11
    • /
    • pp.989-996
    • /
    • 2016
  • This paper intends to develop the rotor track and balance (RTB) algorithm using the nonlinear RTB models and a real-coded hybrid genetic algorithm. The RTB response data computed using the trim solutions with variation of the adjustment parameters have been used to build nonlinear RTB models based on the quadratic interpolation functions. Nonlinear programming problems to minimize the track deviations and the airframe vibration responses have been formulated to find optimum settings of balance weights, trim-tab deflections, and pitch-link lengths of each blade. The results are efficiently resolved using the real-coded genetic algorithm hybridized with the particle swarm optimization techniques for convergence acceleration. The nonlinear RTB models and the optimized RTB parameters have been compared with those computed using the linear models to validate the proposed techniques. The results showed that the nonlinear models lead to more accurate models and reduced RTB responses than the linear counterpart.

Digital Surveillance System with fast Detection of Moving Object (움직이는 물체의 고속 검출이 가능한 디지털 감시 시스템)

  • 김선우;최연성;박한엽
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.5 no.3
    • /
    • pp.405-417
    • /
    • 2001
  • In this paper, since we currently using surveillance system of analog type bring about waste of resource and efficiency deterioration problems, we describe new solution that design and implementation to the digital surveillance system of new type applying compression techniques and encoding techniques of image data using MPEG-2 international standard. Also, we proposed fast motion estimation algorithm requires much less than the convectional digital surveillance camera system. In this paper a fast motion estimation algorithm is proposed the MPEG-2 video encoding. This algorithm is based on a hybrid use of the block matching technique and gradient technique. Also, we describe a method of moving object extraction directly using MPEG-2 video data. Since proposed method is very simple and requires much less computational power than the conventional object detection methods. In this paper we don't use specific H/W and this system is possible only software encoding, decoding and transmission real-time for image data.

  • PDF

Hybrid Down-Sampling Method of Depth Map Based on Moving Objects (움직임 객체 기반의 하이브리드 깊이 맵 다운샘플링 기법)

  • Kim, Tae-Woo;Kim, Jung Hun;Park, Myung Woo;Shin, Jitae
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37A no.11
    • /
    • pp.918-926
    • /
    • 2012
  • In 3D video transmission, a depth map being used for depth image based rendering (DIBR) is generally compressed by reducing resolution for coding efficiency. Errors in resolution reduction are recovered by an appropriate up-sampling method after decoding. However, most previous works only focus on up-sampling techniques to reduce errors. In this paper, we propose a novel down-sampling technique of depth map that applies different down-sampling rates on moving objects and background in order to enhance human perceptual quality. Experimental results demonstrate that the proposed scheme provides both higher visual quality and peak signal-to-noise ratio (PSNR). Also, our method is compatible with other up-sampling techniques.

Development of a High-Volume Simultaneous Sampler for Fine and Coarse Particles using Virtual Impactor and Cyclone Techniques

  • Okuda, Tomoaki;Shishido, Daiki;Terui, Yoshihiro;Fujioka, Kentaro;Isobe, Ryoma;Iwaki, Yusuke;Funato, Koji;Inoue, Kozo
    • Asian Journal of Atmospheric Environment
    • /
    • v.12 no.1
    • /
    • pp.78-86
    • /
    • 2018
  • Filter-based sampling techniques are the conventional way to collect particulate matter, but particles collected and entangled in the filter fibers are difficult to be removed and thus not suited for the following cell- and animal-based exposure experiments. Collecting aerosol particles in powder form using a cyclone instead of a filter would be a possible way to solve this problem. We developed a hybrid virtual-impactor/cyclone high-volume fine and coarse particle sampler and assessed its performance. The developed system achieved 50% collection efficiency with components having the following aerodynamic cut-off diameters: virtual impactor, $2.4{\mu}m$; fine-particle cyclone, $0.18-0.30{\mu}m$; and coarse-particle cyclone, $0.7{\mu}m$. The virtual impactor used in our set-up had good $PM_{2.5}$ separation performance, comparable to that reported for a conventional real impactor. The newly developed sampler can collect fine and coarse particles simultaneously, in combination with exposure testing with collected fine- and coarse-particulate matter samples, should help researchers to elucidate the mechanism by which airborne particles result in adverse health effect in detail.

Development of Motion Control Techniques and Sea Trials of The Test Ship $\ulcorner$NARAE$\lrcorner$ (시험선 $\ulcorner$나래$\lrcorner$의 자세 제어 기술 개발 및 실해역 시험)

  • J.W. Kim;Y.G. Kim;G.J. Lee;C.Y. Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.35 no.3
    • /
    • pp.26-37
    • /
    • 1998
  • In this study, the motion control techniques allied to the test ship NARAE are summarized and the results of sea trials are resented. NARAE adopted a hybrid hull form with lower hull and submerged foils. This type of ship has a substantial instability in heave, pitch and roll modes at the foil-borne stage due to little restoring force, so an active control is indispensable to keep the stability. 4-hydraulic actuators with servo valves were installed to drive foils, and several sensors were used to measure the motion of the ship. PID controller was adopted as a motion controller, and for the real-time control, Pentium-class industrial PC was used. Sea trials including take-off, landing, and banked turn maneuvering were carried out for a period of over 3 months and quite satisfactory results were obtained.

  • PDF

Performance Analysis of Hybrid DS/FH-CDMA over Nakagami Fading Channels with Near-Far Problem (원근문제와 나카가미 페이딩을 고려한 하이브리드 DS/FH-CDMA 방식의 성능 분석)

  • 임태길;강희조
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.10 no.7
    • /
    • pp.1118-1130
    • /
    • 1999
  • In this paper, error performance of DS/FH CDMA system has been analyzed in a radio channel which is characterized by near-far problem and multi-path fading. The DS/FH CDMA system adopts Maximum Ratio Combining(MRC) diversity and BCH(Bose-Chau dhuri-Hocquenghem) coding techniques to enhance system performance. Using the derived error probability equation, the error performance of DS/FH CDMA system has been evaluated and shown in figures to discuss as a function of PN code length(N), hopping rate(q), number of diversity branch(M), coding rate($\gamma$) and bit energy per noise power ratio ${E_b/N_o}$. The results show that DS/FH system is more effective to restrain the affection of near-far problem and multi-path fading than DS system. And there is a substantial enhancement in performance by employing an MRC diversity or BCH coding techniques. Consequently, we expected that proposed system structure is reliable to the voice communication system in near-far problem and multi-path fading channel.

  • PDF

Radarsat-1 Doppler Information Extraction Technique Using Both Received Echo Data and Orbital and Attitude Information of Satellite (신호자료 및 궤도정보를 이용한 Radarsat-1 도플러 정보 추출기법 연구)

  • 고보연;나원상;이용웅
    • Korean Journal of Remote Sensing
    • /
    • v.19 no.6
    • /
    • pp.421-430
    • /
    • 2003
  • The extraction technique for Doppler information(Doppler centroid frequency(f$_{dc}$) and it's rate(f$_{r}$) is very important to make an image from the radar echo signal data. Clutterlock and auto-focusing techniques have been widely used to extract accurate Doppler information. But both techniques are not easy to implement in SAR processor and need quite lots of time to calculate accurate f$_{dc}$ and f$_{r}$ because they are generally based on echo signal data only. In this paper we suggest hybrid method for Doppler extraction using both of echo signal data and orbital and attitude information of satellite. In this method CDE(Correlation Doppler Estimation) technique is only used to estimate exact modular f$_{dc}$ using received echo signal data and rest of other algorithms are based on simple mathematical model of geometry between satellite and ground targets as well as the Doppler frequency ambiguity resolving problem. The experimental results using Radarsat-1 signal data shows that the proposed method can be effectively used for the extraction of Doppler information.

Recent developments and challenges in welding of magnesium to titanium alloys

  • Auwal, S.T.;Ramesh, S.;Tan, Caiwang;Zhang, Zequn;Zhao, Xiaoye;Manladan, S.M.
    • Advances in materials Research
    • /
    • v.8 no.1
    • /
    • pp.47-73
    • /
    • 2019
  • Joining of Mg/Ti hybrid structures by welding for automotive and aerospace applications has attracted great attention in recent years due mainly to its potential benefit of energy saving and emission reduction. However, joining them has been hampered with many difficulties due to their physical and metallurgical incompatibilities. Different joining processes have been employed to join Mg/Ti, and in most cases in order to get a metallurgical bonding between them was the use of an intermediate element at the interface or mutual diffusion of alloying elements from the base materials. The formation of a reaction product (in the form of solid solution or intermetallic compound) along the interface between the Mg and Ti is responsible for formation of a metallurgical bond. However, the interfacial bonding achieved and the joints performance depend significantly on the newly formed reaction product(s). Thus, a thorough understanding of the interaction between the selected intermediate elements with the base metals along with the influence of the associated welding parameters are essential. This review is timely as it presents on the current paradigm and progress in welding and joining of Mg/Ti alloys. The factors governing the welding of several important techniques are deliberated along with their joining mechanisms. Some opportunities to improve the welding of Mg/Ti for different welding techniques are also identified.

Machine Learning-based Classification of Hyperspectral Imagery

  • Haq, Mohd Anul;Rehman, Ziaur;Ahmed, Ahsan;Khan, Mohd Abdul Rahim
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.4
    • /
    • pp.193-202
    • /
    • 2022
  • The classification of hyperspectral imagery (HSI) is essential in the surface of earth observation. Due to the continuous large number of bands, HSI data provide rich information about the object of study; however, it suffers from the curse of dimensionality. Dimensionality reduction is an essential aspect of Machine learning classification. The algorithms based on feature extraction can overcome the data dimensionality issue, thereby allowing the classifiers to utilize comprehensive models to reduce computational costs. This paper assesses and compares two HSI classification techniques. The first is based on the Joint Spatial-Spectral Stacked Autoencoder (JSSSA) method, the second is based on a shallow Artificial Neural Network (SNN), and the third is used the SVM model. The performance of the JSSSA technique is better than the SNN classification technique based on the overall accuracy and Kappa coefficient values. We observed that the JSSSA based method surpasses the SNN technique with an overall accuracy of 96.13% and Kappa coefficient value of 0.95. SNN also achieved a good accuracy of 92.40% and a Kappa coefficient value of 0.90, and SVM achieved an accuracy of 82.87%. The current study suggests that both JSSSA and SNN based techniques prove to be efficient methods for hyperspectral classification of snow features. This work classified the labeled/ground-truth datasets of snow in multiple classes. The labeled/ground-truth data can be valuable for applying deep neural networks such as CNN, hybrid CNN, RNN for glaciology, and snow-related hazard applications.