• Title/Summary/Keyword: hybrid techniques

Search Result 746, Processing Time 0.027 seconds

A Hybrid Clustering Technique for Processing Large Data (대용량 데이터 처리를 위한 하이브리드형 클러스터링 기법)

  • Kim, Man-Sun;Lee, Sang-Yong
    • The KIPS Transactions:PartB
    • /
    • v.10B no.1
    • /
    • pp.33-40
    • /
    • 2003
  • Data mining plays an important role in a knowledge discovery process and various algorithms of data mining can be selected for the specific purpose. Most of traditional hierachical clustering methode are suitable for processing small data sets, so they difficulties in handling large data sets because of limited resources and insufficient efficiency. In this study we propose a hybrid neural networks clustering technique, called PPC for Pre-Post Clustering that can be applied to large data sets and find unknown patterns. PPC combinds an artificial intelligence method, SOM and a statistical method, hierarchical clustering technique, and clusters data through two processes. In pre-clustering process, PPC digests large data sets using SOM. Then in post-clustering, PPC measures Similarity values according to cohesive distances which show inner features, and adjacent distances which show external distances between clusters. At last PPC clusters large data sets using the simularity values. Experiment with UCI repository data showed that PPC had better cohensive values than the other clustering techniques.

Trend and Prospect of Thin Film Processing Technology (박막제조 기술의 동향과 전망)

  • Jeong, Jae-In;Yang, Ji-Hooon
    • Journal of the Korean Magnetics Society
    • /
    • v.21 no.5
    • /
    • pp.185-192
    • /
    • 2011
  • The technique of producing thin film plays a crucial role in modern science and technology as well as in industrial purposes. Numerous efforts have been made to get high quality thin film through surface treatment of materials. PVD (Physical Vapor Deposition) and CVD (Chemical Vapor Deposition) are two of the most popular deposition techniques used in both scientific study and industrial use. It is well known that the film deposited by PVD and CVD commonly possesses a columnar microstructure which affects many film properties. In recent years, various types of deposition sources which feature high material uses and excellent film properties have been developed. Electromagnetic levitation source appeared as an alternative deposition source to realize high deposition rate for industrial use. Complex film structures such as nano multilayer and multi-components have been prepared to achieve better film properties. Glancing angle deposition (GLAD) has also been developed as a technique to engineer the columnar structure of thin films on the micro- and nanoscale. In this paper, the trends and major issues of thin film technology based on PVD and CVD have been discussed together with the prospect of thin film technology.

Agent Based Information Security Framework for Hybrid Cloud Computing

  • Tariq, Muhammad Imran
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.1
    • /
    • pp.406-434
    • /
    • 2019
  • In general, an information security approach estimates the risk, where the risk is to occur due to an unusual event, and the associated consequences for cloud organization. Information Security and Risk Management (ISRA) practices vary among cloud organizations and disciplines. There are several approaches to compare existing risk management methods for cloud organizations but their scope is limited considering stereo type criteria, rather than developing an agent based task that considers all aspects of the associated risk. It is the lack of considering all existing renowned risk management frameworks, their proper comparison, and agent techniques that motivates this research. This paper proposes Agent Based Information Security Framework for Hybrid Cloud Computing as an all-inclusive method including cloud related methods to review and compare existing different renowned methods for cloud computing risk issues and by adding new tasks from surveyed methods. The concepts of software agent and intelligent agent have been introduced that fetch/collect accurate information used in framework and to develop a decision system that facilitates the organization to take decision against threat agent on the basis of information provided by the security agents. The scope of this research primarily considers risk assessment methods that focus on assets, potential threats, vulnerabilities and their associated measures to calculate consequences. After in-depth comparison of renowned ISRA methods with ABISF, we have found that ISO/IEC 27005:2011 is the most appropriate approach among existing ISRA methods. The proposed framework was implemented using fuzzy inference system based upon fuzzy set theory, and MATLAB(R) fuzzy logic rules were used to test the framework. The fuzzy results confirm that proposed framework could be used for information security in cloud computing environment.

Human Error Probability Determination in Blasting Process of Ore Mine Using a Hybrid of HEART and Best-Worst Methods

  • Aliabadi, Mostafa Mirzaei;Mohammadfam, Iraj;Soltanian, Ali Reza;Najafi, Kamran
    • Safety and Health at Work
    • /
    • v.13 no.3
    • /
    • pp.326-335
    • /
    • 2022
  • Background: One of the important actions for enhancing human reliability in any industry is assessing human error probability (HEP). The HEART technique is a robust tool for calculating HEP in various industries. The traditional HEART has some weaknesses due to expert judgment. For these reasons, a hybrid model is presented in this study to integrate HEART with Best-Worst Method. Materials Method: In this study, the blasting process in an iron ore mine was investigated as a case study. The proposed HEART-BWM was used to increase the sensitivity of APOA calculation. Then the HEP was calculated using conventional HEART formula. A consistency ratio was calculated using BWM. Finally, for verification of the HEART-BWM, HEP calculation was done by traditional HEART and HEART-BWM. Results: In the view of determined HEPs, the results showed that the mean of HEP in the blasting of the iron ore process was 2.57E-01. Checking the full blast of all the holes after the blasting sub-task was the most dangerous task due to the highest HEP value, and it was found 9.646E-01. On the other side, obtaining a permit to receive and transport materials was the most reliable task, and the HEP was 8.54E-04. Conclusion: The results showed a good consistency for the proposed technique. Comparing the two techniques confirmed that the BWM makes the traditional HEART faster and more reliable by performing the basic comparisons.

Flight State Prediction Techniques Using a Hybrid CNN-LSTM Model (CNN-LSTM 혼합모델을 이용한 비행상태 예측 기법)

  • Park, Jinsang;Song, Min jae;Choi, Eun ju;Kim, Byoung soo;Moon, Young ho
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.4
    • /
    • pp.45-52
    • /
    • 2022
  • In the field of UAM, which is attracting attention as a next-generation transportation system, technology developments for using UAVs have been actively conducted in recent years. Since UAVs adopted with these technologies are mainly operated in urban areas, it is imperative that accidents are prevented. However, it is not easy to predict the abnormal flight state of an UAV causing a crash, because of its strong non-linearity. In this paper, we propose a method for predicting a flight state of an UAV, based on a CNN-LSTM hybrid model. To predict flight state variables at a specific point in the future, the proposed model combines the CNN model extracting temporal and spatial features between flight data, with the LSTM model extracting a short and long-term temporal dependence of the extracted features. Simulation results show that the proposed method has better performance than the prediction methods, which are based on the existing artificial neural network model.

A RFID Tag Indexing Scheme Using Spatial Index (공간색인을 이용한 RFID 태그관리 기법)

  • Joo, Heon-Sik
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.7
    • /
    • pp.89-95
    • /
    • 2009
  • This paper proposes a tag indexing scheme for RFID tag using spatial index. The tag being used for the inventory management and the tag's location is determined by the position of readers. Therefore, the reader recognizes the tag, which is attached products and thereby their positions can be traced down. In this paper, we propose hTag-tree( Hybrid Tag index) which manages RFID tag attached products. hTag-tree is a new index, which is based on tag's attributes with fast searching, and this tag index manages RFID tags using reader's location. This tag index accesses rapidly to tags for insertion, deletion and updating in dynamic environment. This can minimize the number of node accesses in tag searching comparing to previous techniques. Also, by the extension of MER in present tag index, it is helpful to stop the lowering of capacity which can be caused by parent node approach. The proposed index experiment deals with the comparison of tag index. Fixed Interval R-tree, and present spatial index, R-tree comparison. As a result, the amount of searching time is significantly shortened through hTag-tree node access in data search. This shows that the use of proposed index improves the capacity of effective management of a large amount of RFID tag.

An Efficient Mobility Support Scheme based Multi-hop ARP in Wireless Mesh Networks (무선메쉬 네트워크 환경에서 다중홉 ARP 기반의 효율적인 이동성 지원)

  • Jeon, Seung-Heub;Cho, Young-Bok;Lee, Sang-Ho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.11
    • /
    • pp.91-96
    • /
    • 2009
  • In this paper, interoperability in heterogeneous wireless mesh network, and mesh nodes for providing efficient IP mobility technique offers multi-hop ARP. Heterogeneous wireless mesh networks to MANETs based on a wireless mesh network backbone and non-MANET architecture is based on a client wireless mesh network and the two mobile networks, combined with a hybrid wireless mesh network are separate. In two different hybrid wireless mesh network routing protocols used to connect the two protocols in the protocol conversion at the gateway to parallel processing problems seriously overload occurs. All of the network reliability and stability are factors that reduce. Therefore, for efficient integration with L3 routing protocols, design techniques to build ARP multi-hop go through the experiment to increase the number of mesh nodes, the packet forwarding rate and an increased hop number of the node was to ensure reliability and stability.

Predicting concrete's compressive strength through three hybrid swarm intelligent methods

  • Zhang Chengquan;Hamidreza Aghajanirefah;Kseniya I. Zykova;Hossein Moayedi;Binh Nguyen Le
    • Computers and Concrete
    • /
    • v.32 no.2
    • /
    • pp.149-163
    • /
    • 2023
  • One of the main design parameters traditionally utilized in projects of geotechnical engineering is the uniaxial compressive strength. The present paper employed three artificial intelligence methods, i.e., the stochastic fractal search (SFS), the multi-verse optimization (MVO), and the vortex search algorithm (VSA), in order to determine the compressive strength of concrete (CSC). For the same reason, 1030 concrete specimens were subjected to compressive strength tests. According to the obtained laboratory results, the fly ash, cement, water, slag, coarse aggregates, fine aggregates, and SP were subjected to tests as the input parameters of the model in order to decide the optimum input configuration for the estimation of the compressive strength. The performance was evaluated by employing three criteria, i.e., the root mean square error (RMSE), mean absolute error (MAE), and the determination coefficient (R2). The evaluation of the error criteria and the determination coefficient obtained from the above three techniques indicates that the SFS-MLP technique outperformed the MVO-MLP and VSA-MLP methods. The developed artificial neural network models exhibit higher amounts of errors and lower correlation coefficients in comparison with other models. Nonetheless, the use of the stochastic fractal search algorithm has resulted in considerable enhancement in precision and accuracy of the evaluations conducted through the artificial neural network and has enhanced its performance. According to the results, the utilized SFS-MLP technique showed a better performance in the estimation of the compressive strength of concrete (R2=0.99932 and 0.99942, and RMSE=0.32611 and 0.24922). The novelty of our study is the use of a large dataset composed of 1030 entries and optimization of the learning scheme of the neural prediction model via a data distribution of a 20:80 testing-to-training ratio.

Ensembles of neural network with stochastic optimization algorithms in predicting concrete tensile strength

  • Hu, Juan;Dong, Fenghui;Qiu, Yiqi;Xi, Lei;Majdi, Ali;Ali, H. Elhosiny
    • Steel and Composite Structures
    • /
    • v.45 no.2
    • /
    • pp.205-218
    • /
    • 2022
  • Proper calculation of splitting tensile strength (STS) of concrete has been a crucial task, due to the wide use of concrete in the construction sector. Following many recent studies that have proposed various predictive models for this aim, this study suggests and tests the functionality of three hybrid models in predicting the STS from the characteristics of the mixture components including cement compressive strength, cement tensile strength, curing age, the maximum size of the crushed stone, stone powder content, sand fine modulus, water to binder ratio, and the ratio of sand. A multi-layer perceptron (MLP) neural network incorporates invasive weed optimization (IWO), cuttlefish optimization algorithm (CFOA), and electrostatic discharge algorithm (ESDA) which are among the newest optimization techniques. A dataset from the earlier literature is used for exploring and extrapolating the STS behavior. The results acquired from several accuracy criteria demonstrated a nice learning capability for all three hybrid models viz. IWO-MLP, CFOA-MLP, and ESDA-MLP. Also in the prediction phase, the prediction products were in a promising agreement (above 88%) with experimental results. However, a comparative look revealed the ESDA-MLP as the most accurate predictor. Considering mean absolute percentage error (MAPE) index, the error of ESDA-MLP was 9.05%, while the corresponding value for IWO-MLP and CFOA-MLP was 9.17 and 13.97%, respectively. Since the combination of MLP and ESDA can be an effective tool for optimizing the concrete mixture toward a desirable STS, the last part of this study is dedicated to extracting a predictive formula from this model.

Hybrid Movie Recommendation System Using Clustering Technique (클러스터링 기법을 이용한 하이브리드 영화 추천 시스템)

  • Sophort Siet;Sony Peng;Yixuan Yang;Sadriddinov Ilkhomjon;DaeYoung Kim;Doo-Soon Park
    • Annual Conference of KIPS
    • /
    • 2023.05a
    • /
    • pp.357-359
    • /
    • 2023
  • This paper proposes a hybrid recommendation system (RS) model that overcomes the limitations of traditional approaches such as data sparsity, cold start, and scalability by combining collaborative filtering and context-aware techniques. The objective of this model is to enhance the accuracy of recommendations and provide personalized suggestions by leveraging the strengths of collaborative filtering and incorporating user context features to capture their preferences and behavior more effectively. The approach utilizes a novel method that combines contextual attributes with the original user-item rating matrix of CF-based algorithms. Furthermore, we integrate k-mean++ clustering to group users with similar preferences and finally recommend items that have highly rated by other users in the same cluster. The process of partitioning is the use of the rating matrix into clusters based on contextual information offers several advantages. First, it bypasses of the computations over the entire data, reducing runtime and improving scalability. Second, the partitioned clusters hold similar ratings, which can produce greater impacts on each other, leading to more accurate recommendations and providing flexibility in the clustering process. keywords: Context-aware Recommendation, Collaborative Filtering, Kmean++ Clustering.