• Title/Summary/Keyword: hybrid techniques

Search Result 746, Processing Time 0.021 seconds

Forced Vibration Test of a Real-Scale Structure and Design of HMD Controllers for Simulating Earthquake Response (실물 크기 구조물의 강제진동실험 및 지진응답 모사를 위한 HMD제어기 설계)

  • Lee, Sang-Hyun;Park, Eun-Churn;Youn, Kyung-Jo;Lee, Sung-Kyung;Yu, Eun-Jong;Min, Kyung-Won;Chung, Lan;Min, Jeong-Ki;Kim, Young-Chan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.6 s.52
    • /
    • pp.103-114
    • /
    • 2006
  • Forced vibration testing is important for correlating the mathematical model of a structure with the real one and for evaluating the performance of the real structure. There exist various techniques available for evaluating the seismic performance using dynamic and static measurements. In this paper, full scale forced vibration tests simulating earthquake response are implemented by using a hybrid mass damper. The finite element (FE) model of the structure was analytically constructed using ANSYS and the model was updated using the results experimentally measured by the forced vibration test. Pseudo-earthquake excitation tests showed that HMD induced floor responses coincided with the earthquake induced ones which were numerically calculated based on the updated FE model.

Real-Time Power-Saving Scheduling Based on Genetic Algorithms in Multi-core Hybrid Memory Environments (멀티코어 이기종메모리 환경에서의 유전 알고리즘 기반 실시간 전력 절감 스케줄링)

  • Yoo, Suhyeon;Jo, Yewon;Cho, Kyung-Woon;Bahn, Hyokyung
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.1
    • /
    • pp.135-140
    • /
    • 2020
  • Recently, due to the rapid diffusion of intelligent systems and IoT technologies, power saving techniques in real-time embedded systems has become important. In this paper, we propose P-GA (Parallel Genetic Algorithm), a scheduling algorithm aims at reducing the power consumption of real-time systems in multi-core hybrid memory environments. P-GA improves the Proportional-Fairness (PF) algorithm devised for multi-core environments by combining the dynamic voltage/frequency scaling of the processor with the nonvolatile memory technologies. Specifically, P-GA applies genetic algorithms for optimizing the voltage and frequency modes of processors and the memory types, thereby minimizing the power consumptions of the task set. Simulation experiments show that the power consumption of P-GA is reduced by 2.85 times compared to the conventional schemes.

Spectrum Allocation and Service Control for Energy Saving Based on Large-Scale User Behavior Constraints in Heterogeneous Networks

  • Yang, Kun;Zhang, Xing;Wang, Shuo;Wang, Lin;Wang, Wenbo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.8
    • /
    • pp.3529-3550
    • /
    • 2016
  • In heterogeneous networks (HetNets), energy saving is vital for a sustainable network development. Many techniques, such as spectrum allocation, network planning, etc., are used to improve the network energy efficiency (EE). In this paper, micro BSs utilizing cell range expansion (CRE) and spectrum allocation are considered in multi-channel heterogeneous networks to improve EE. Hotspot region is assumed to be covered by micro BSs which can ensure that the hotspot capacity is greater than the average demand of hotspot users. The expressions of network energy efficiency are derived under shared, orthogonal and hybrid subchannel allocation schemes, respectively. Particle swarm optimization (PSO) algorithm is used to solve the optimal ratio of subchannel allocation in orthogonal and hybrid schemes. Based on the results of the optimal analysis, we propose three service control strategies on the basis of large-scale user behaviors, i.e., adjust micro cell rang expansion (AmCRE), adjust micro BSs density (AmBD) and adjust micro BSs transmit power (AmBTP). Both theoretical and simulation results show that using shared subchannel allocation scheme in AmBD strategies can obtain maximal EE with a very small area ratio. Using orthogonal subchannel allocation scheme in AmCRE strategies can obtain maximal EE when area ratio is larger. Using hybrid subchannel allocation scheme in AmCRE strategies can obtain maximal EE when area ratio is large enough. No matter which service control strategy is used, orthogonal spectrum scheme can obtain the maximal hotspot user rates.

An optimal discrete-time feedforward compensator for real-time hybrid simulation

  • Hayati, Saeid;Song, Wei
    • Smart Structures and Systems
    • /
    • v.20 no.4
    • /
    • pp.483-498
    • /
    • 2017
  • Real-Time Hybrid Simulation (RTHS) is a powerful and cost-effective dynamic experimental technique. To implement a stable and accurate RTHS, time delay present in the experiment loop needs to be compensated. This delay is mostly introduced by servo-hydraulic actuator dynamics and can be reduced by applying appropriate compensators. Existing compensators have demonstrated effective performance in achieving good tracking performance. Most of them have been focused on their application in cases where the structure under investigation is subjected to inputs with relatively low frequency bandwidth such as earthquake excitations. To advance RTHS as an attractive technique for other engineering applications with broader excitation frequency, a discrete-time feedforward compensator is developed herein via various optimization techniques to enhance the performance of RTHS. The proposed compensator is unique as a discrete-time, model-based feedforward compensator. The feedforward control is chosen because it can substantially improve the reference tracking performance and speed when the plant dynamics is well-understood and modeled. The discrete-time formulation enables the use of inherently stable digital filters for compensator development, and avoids the error induced by continuous-time to discrete-time conversion during the compensator implementation in digital computer. This paper discusses the technical challenges in designing a discrete-time compensator, and proposes several optimal solutions to resolve these challenges. The effectiveness of compensators obtained via these optimal solutions is demonstrated through both numerical and experimental studies. Then, the proposed compensators have been successfully applied to RTHS tests. By comparing these results to results obtained using several existing feedforward compensators, the proposed compensator demonstrates superior performance in both time delay and Root-Mean-Square (RMS) error.

Dynamic Recommendation System of Web Information Using Ensemble Support Vector Machine and Hybrid SOM (앙상블 Support Vector Machine과 하이브리드 SOM을 이용한 동적 웹 정보 추천 시스템)

  • Yoon, Kyung-Bae;Choi, Jun-Hyeog
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.4
    • /
    • pp.433-438
    • /
    • 2003
  • Recently, some studies of a web-based information recommendation technique which provides users with the most necessary information through websites like a web-based shopping mall have been conducted vigorously. In most cases of web information recommendation techniques which rely on a user profile and a specific feedback from users, they require accurate and diverse profile information of users. However, in reality, it is quite difficult to acquire this related information. This paper is aimed to suggest an information prediction technique for a web information service without depending on the users'specific feedback and profile. To achieve this goal, this study is to design and implement a Dynamic Web Information Prediction System which can recommend the most useful and necessary information to users from a large volume of web data by designing and embodying Ensemble Support Vector Machine and hybrid SOM algorithm and eliminating the scarcity problem of web log data.

Kansas Vegetation Mapping Using Multi-Temporal Remote Sensing Data: A Hybrid Approach (계절별 위성자료를 이용한 미국 캔자스주 식생 분류 - 하이브리드 접근방식의 적용 -)

  • ;Stephen Egbert;Dana Peterson;Aimee Stewart;Chris Lauver;Kevin Price;Clayton Blodgett;Jack Cully, Jr,;Glennis Kaufman
    • Journal of the Korean Geographical Society
    • /
    • v.38 no.5
    • /
    • pp.667-685
    • /
    • 2003
  • To address the requirements of gap analysis for species protection, as well as the needs of state and federal agencies for detailed digital land cover, a 43-class map at the vegetation alliance level was created for the state of Kansas using multi-temporal Thematic Mapper imagery. The mapping approach included the use of three-date multi-seasonal imagery, a two-stage classification approach that first masked out cropland areas using unsupervised classification and then mapped natural vegetation with supervised classification, visualization techniques utilizing a map of small multiples and field experts, and extensive use of ancillary data in post-hoc processing. Accuracy assessment was conducted at three levels of generalization (Anderson Level I, vegetation formation, and vegetation alliance) and three cross-tabulation approaches. Overall accuracy ranged from 51.7% to 89.4%, depending on level of generalization, while accuracy figures for individual alliance classes varied by area covered and level of sampling.

A Hybrid Generation Method of Visual Effects for Mobile Entertainment Applications (모바일 엔터테인먼트 애플리케이션을 위한 혼합적 시각 효과 생성 방법)

  • Kim, Byung-Cheol
    • Journal of Digital Convergence
    • /
    • v.13 no.12
    • /
    • pp.367-380
    • /
    • 2015
  • This paper proposes a hybrid rendering method which combines pre-computed global illumination results and interactive local illumination techniques and thus could interactively produce photo-realistic visual effects for mobile entertainment applications. The proposed method uses the programmable shading capability of OpenGL, a de facto standard for computer graphics library so that it can be deployed in a real-world development environment. Also, it increases the rendering time by a negligible amount compared to normal rendering time since the pre-computed results are used as operands of plain arithmetic operations. Therefore it is expected to be applicable in practice for mobiles games which require real-time responsiveness to users.

A Study on the Retro Technology Fashion Design with Floral Patterns -through CAD- (꽃문양을 활용한 레트로 테크널러지 패션 디자인 연구 -CAD를 활용하여-)

  • Jung Mi-Jin
    • Journal of the Korean Society of Costume
    • /
    • v.56 no.7 s.106
    • /
    • pp.105-120
    • /
    • 2006
  • Today's radical change of environment and technology spreaded high-technology art by cutting across a general idea of art, expressed machine aesthetic in fashion style by influencing materials and production processes of fashion. The purpose of this research is to take another look at the value and the importance of ornaments in terms of fashion design, to overcome the negative aspect of Technology Fashion by designing Retro Technology Fashion that harmonizes reason with sensibilities through floral patterns. The results of this study are as followings. 1. If Retro technology Fashion was analyzed by time and space element that are postmodernism techniques, there are Ethnic Technology Fashion that are based on space and historical Technology Fashion that are based on time. In terms of spare element, there is the hybrid of revival of exotic folklore with Technology fashion. In terms of time element, there is the hybrid of costumes of before 20th Century with Technology Fashion. It means unifying detail or silhouette of costumes of ancient time to modern time wit Technology Fashion. For another time element, the hybrid of retro fashion after 20th Century with Technology Fashion. The retro nostalgia is revived by the floral patterns or silhouette of Hippie fashion unified with Technology Fashion. 2. Based on above research, Retro Technology Fashion with floral pattern on CAD were designed. As the results, for Ethno Fashion that is spatial retro, 'Asian Technology fashion' was designed with bright colors, China collar that are oriental, and vinyl material. For historical Technology fashion that are based on time, 'Space Middle Age' was designed with tight silhouette, party colored pants and plastic material.

Hybrid Genetic Operators of Hamming Distance and Fitness for Reducing Premature Convergence (조기수렴 저감을 위한 해밍거리와 적합도의 혼합 유전 연산자)

  • Lee, Hong-Kyu
    • Journal of Advanced Navigation Technology
    • /
    • v.18 no.2
    • /
    • pp.170-177
    • /
    • 2014
  • Genetic Algorithms are robust search and optimization techniques but have some problems such as premature convergence and convergence to local extremum. As population diversity converges to low value, the search ability decreases and converges to local extremum but population diversity converges to high value, then the search ability increases and converges to global optimum or genetic algorithm may diverge. To guarantee that genetic algorithms converge to the global optima, the genetic operators should be chosen properly. In this paper, we propose the genetic operators with the hybrid function of the average Hamming distance and the fitness value to maintain the diversity of the GA's population for escaping from the premature convergence. Results of simulation studies verified the effects of the mutation operator for maintaining diversity and the other operators for improving convergence properties as well as the feasibility of using proposed genetic operators on convergence properties to avoid premature convergence and convergence to local extremum.

Customer Segmentation of a Home Study Company using a Hybrid Decision Tree and Artificial Neural Network Model (하이브리드 의사결정나무와 인공신경망 모델을 이용한 방문학습지사의 고객세분화)

  • Seo Kwang-Kyu;Ahn Beum-Jun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.3
    • /
    • pp.518-523
    • /
    • 2006
  • Due to keen competition among companies, they have segmented customers and they are trying to offer specially targeted customer by means of the distinguished method. In accordance, data mining techniques are noted as the effective method that extracts useful information. This paper explores customer segmentation of the home study company using a hybrid decision tree and artificial neural network model. With the application of variance selection process from decision tree, the systemic process of defining input vector's value and the rule generation were developed. In point of customer management, this research analyzes current customers and produces the patterns of them so that the company can maintain good customer relationship. The case study shows that the predicted accuracy of the proposed model is higher than those of regression, decision tree (CART), artificial neural networks.

  • PDF