Proceedings of the Korea Inteligent Information System Society Conference
/
2003.05a
/
pp.416-425
/
2003
Recommender systems are a personalized information filtering technology to help customers find the products they would like to purchase. Collaborative filtering (CF) has been known to be the most successful recommendation technology. However its widespread use in e-commerce has exposed two research issues, sparsity and scalability. In this paper, we propose several hybrid recommender procedures based on web usage mining, clustering techniques and collaborative filtering to address these issues. Experimental evaluation of suggested procedures on real e-commerce data shows interesting relation between characteristics of procedures and diverse situations.
Proceedings of the Korea Water Resources Association Conference
/
2016.05a
/
pp.192-192
/
2016
Nowadays, stormwaters have been affected by urbanization and climate change. These transition can cause many problems for hydrologic cycle by increasing runoff volume like flood and low water quality. As with other metropolises and peninsulas, Busan has involved with these problems too. Therefore, it is really vital to do some arrangements to solve them by low impact development (LID) technology. In fact, LID has been introduced to reduce runoff by applying some techniques such as green infrastructure (GI). In order to deal with the aforementioned issues in Busan, this study attempts to design and construct a hybrid green roof-planter box system at Pusan National University GI/LID Facility based on local weather. For this purpose, we used experiment and modeling method on some planter boxes and optimized them by trial and error method.
This paper reviews the current state-of-the-art in the numerical evaluation of wind loads on buildings. Important aspects of numerical modeling including (i) turbulence modeling, (ii) inflow boundary conditions, (iii) ground surface roughness, (iv) near wall treatments, and (vi) quantification of wind loads using the techniques of computational fluid dynamics (CFD) are summarized. Relative advantages of Large Eddy Simulation (LES) over Reynolds Averaged Navier-Stokes (RANS) and hybrid RANS-LES over LES are discussed based on physical realism and ease of application for wind load evaluation. Overall LES based simulations seem suitable for wind load evaluation. A need for computational wind load validations in comparison with experimental or field data is emphasized. A comparative study among numerical and experimental wind load evaluation on buildings demonstrated generally good agreements on the mean values, but more work is imperative for accurate peak design wind load evaluations. Particularly more research is needed on transient inlet boundaries and near wall modeling related issues.
International journal of advanced smart convergence
/
v.8
no.3
/
pp.61-68
/
2019
Spatial modulation (SM) is the first proposed space modulation technique. By further utilizing the quadrature spatial dimension, quadrature spatial modulation (QSM) has been developed as an amendment to SM system to enhance the overall spectral efficiency. Both techniques are capable of entirely eliminating interchannel interference (ICI) at the receiver. In this paper, we propose a simple adaptive hybrid switching transmission scheme to obtain better system performance than SM and QSM systems under a fixed transmission date rate. The presented modulator selection criterion for switching between spatial modulator and quadrature spatial modulator is based on the larger received minimum distance of spatial modulator and quadrature spatial modulator to exploit the spatial channel freedom. It is shown through Monte Carlo simulations that the proposed hybrid SM and QSM switching system yields lower error performance than the conventional SM and QSM systems under the same fixed data rate and thus can provide signal to noise ratio (SNR) gain.
Journal of Korea Society of Digital Industry and Information Management
/
v.15
no.3
/
pp.197-206
/
2019
Telemarketing has been used in finance due to the reduction of offline channels. In order to select telemarketing target customers, various machine learning techniques have emerged to maximize the effect of minimum cost. However, there are problems that the class imbalance, which the number of marketing success customers is smaller than the number of failed customers, and the recall rate is lower than accuracy. In this paper, we propose a method that solve the imbalanced class problem and increase the recall rate to improve the efficiency. The hybrid sampling method is applied to balance the data in the class, and the stacked deep network is applied to improve the recall and precision as well as the accuracy. The proposed method is applied to actual bank telemarketing data. As a result of the comparison experiment, the accuracy, the recall, and the precision is improved higher than that of the conventional methods.
Sustainable shipping depends on eco-friendly energy solutions. This paper reviews methods for predicting marine fuel cell performance, including empirical approaches, physical modeling, data-driven techniques, and hybrid methods. Accurate prediction models tailored to the marine environment's unique conditions are crucial for operational efficiency. By evaluating the strengths and weaknesses of each method, this study provides a comprehensive analysis of effective strategies for forecasting polymer electrolyte membrane fuel cell and solid oxide fuel cell performance in marine applications. These insights contribute to the advancement of eco-friendly shipping technologies and enhance fuel cell performance in challenging marine environments.
We call a data set in which the number of records belonging to a certain class far outnumbers the number of records belonging to the other class, 'imbalanced data set'. Most of the classification techniques perform poorly on imbalanced data sets. When we evaluate the performance of a certain classification technique, we need to measure not only 'accuracy' but also 'sensitivity' and 'specificity'. In a customer churn prediction problem, 'retention' records account for the majority class, and 'churn' records account for the minority class. Sensitivity measures the proportion of actual retentions which are correctly identified as such. Specificity measures the proportion of churns which are correctly identified as such. The poor performance of the classification techniques on imbalanced data sets is due to the low value of specificity. Many previous researches on imbalanced data sets employed 'oversampling' technique where members of the minority class are sampled more than those of the majority class in order to make a relatively balanced data set. When a classification model is constructed using this oversampled balanced data set, specificity can be improved but sensitivity will be decreased. In this research, we developed a hybrid model of support vector machine (SVM), artificial neural network (ANN) and decision tree, that improves specificity while maintaining sensitivity. We named this hybrid model 'hybrid SVM model.' The process of construction and prediction of our hybrid SVM model is as follows. By oversampling from the original imbalanced data set, a balanced data set is prepared. SVM_I model and ANN_I model are constructed using the imbalanced data set, and SVM_B model is constructed using the balanced data set. SVM_I model is superior in sensitivity and SVM_B model is superior in specificity. For a record on which both SVM_I model and SVM_B model make the same prediction, that prediction becomes the final solution. If they make different prediction, the final solution is determined by the discrimination rules obtained by ANN and decision tree. For a record on which SVM_I model and SVM_B model make different predictions, a decision tree model is constructed using ANN_I output value as input and actual retention or churn as target. We obtained the following two discrimination rules: 'IF ANN_I output value <0.285, THEN Final Solution = Retention' and 'IF ANN_I output value ${\geq}0.285$, THEN Final Solution = Churn.' The threshold 0.285 is the value optimized for the data used in this research. The result we present in this research is the structure or framework of our hybrid SVM model, not a specific threshold value such as 0.285. Therefore, the threshold value in the above discrimination rules can be changed to any value depending on the data. In order to evaluate the performance of our hybrid SVM model, we used the 'churn data set' in UCI Machine Learning Repository, that consists of 85% retention customers and 15% churn customers. Accuracy of the hybrid SVM model is 91.08% that is better than that of SVM_I model or SVM_B model. The points worth noticing here are its sensitivity, 95.02%, and specificity, 69.24%. The sensitivity of SVM_I model is 94.65%, and the specificity of SVM_B model is 67.00%. Therefore the hybrid SVM model developed in this research improves the specificity of SVM_B model while maintaining the sensitivity of SVM_I model.
Although many studies demonstrate that one technique outperforms the others for a given data set, there is often no way to tell a priori which of these techniques will be most effective in the classification problems. Alternatively, it has been suggested that a better approach to classification problem might be to integrate several different forecasting techniques. This study proposes the linearly combining methodology of different classification techniques. The methodology is developed to find the optimal combining weight and compute the weighted-average of different techniques' outputs. The proposed methodology is represented as the form of mixed integer programming. The objective function of proposed combining methodology is to minimize total misclassification cost which is the weighted-sum of two types of misclassification. To simplify the problem solving process, cutoff value is fixed and threshold function is removed. The form of mixed integer programming is solved with the branch and bound methods. The result showed that proposed methodology classified more accurately than any of techniques individually did. It is confirmed that Proposed methodology Predicts significantly better than individual techniques and the other combining methods.
International Journal of Industrial Entomology and Biomaterials
/
v.29
no.2
/
pp.198-206
/
2014
The olive fly Bactrocera oleae (Rossi) is the key pest for olive cultivation worldwide. Substantial effort has been invested in the development of the sterile insect technique (SIT) to control this pest. One of the limitations to develop SIT technology for olive fruit fly is the low ability of wild females to lay eggs in other medium than olive fruits, and their slow adaptation to oviposition in artificial substrates. In the present study, fruit grapes were used as an alternative egg collection medium to harvest eggs and young larvae from freshly colonized wild strains originating from France, Italy, Spain and Croatia. The larvae were allowed to develop into the fruits until the second instar, before they were extracted out and further reared on a standard artificial diet. Furthermore, F1 to F4 female flies were alternatively offered wax bottles to oviposit. Finally, the performance of hybrid strains created from crosses between wild and long colonised flies was assessed. The results showed that females of all 4 wild strains readily oviposited eggs in grapes and from the F2 generation onward, females from all strains were adapted to laying eggs in wax bottles. No difference was observed in eggs and pupae production among all strains tested. The findings are discussed for their implications on SIT application against olive fruit fly.
With the development of the Internet, various IT technologies such as IoT, Cloud, etc. have been developed, and various systems have been built in countries and companies. Because these systems generate and share vast amounts of data, they needed a variety of systems that could detect threats to protect the critical data contained in the system, which has been actively studied to date. Typical techniques include anomaly detection and misuse detection, and these techniques detect threats that are known or exhibit behavior different from normal. However, as IT technology advances, so do technologies that threaten systems, and these methods of detection. Advanced Persistent Threat (APT) attacks national or companies systems to steal important information and perform attacks such as system down. These threats apply previously unknown malware and attack technologies. Therefore, in this paper, we propose a hybrid intrusion detection system that combines anomaly detection and misuse detection to detect unknown threats. Two detection techniques have been applied to enable the detection of known and unknown threats, and by applying machine learning, more accurate threat detection is possible. In misuse detection, we applied Classification based on Association Rule(CBA) to generate rules for known threats, and in anomaly detection, we used One-Class SVM(OCSVM) to detect unknown threats. Experiments show that unknown threat detection accuracy is about 94%, and we confirm that unknown threats can be detected.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.