• Title/Summary/Keyword: hybrid systems

Search Result 2,645, Processing Time 0.243 seconds

Hybrid Algorithm for Efficient learing of Regression Support Vector Machine (회귀용 Support Vector Machine의 효율적인 학습을 위한 조합형 알고리즘)

  • 조용현;박창환;박용수
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2000.11a
    • /
    • pp.93-96
    • /
    • 2000
  • 본 논문에서는 SVM의 학습성 개선을 위해 모멘트와 kernel-adatron 기법이 조합된 하이브리드 학습알고리즘을 제안하였다. 제안된 학습알고리즘은 SVM의 학습기법인 기울기상승법에서 발생하는 최적해로의 수렴에 따른 발진을 억제하여 그 수렴속도를 좀 더 개선시키는 모멘트의 장점과 비선형 특징공간에서의 동작과 구현의 용이성을 가진 kernel-adatron 알고리즘의 장점을 그대로 살리는 것이다. 제안된 알고리즘을 비선형 함수 회귀에 적용해 본 결과 학습속도에 있어서 QP와 기존의 kernel-adatron 알고리즘보다 더 우수한 성능이 있음을 확인하였다

  • PDF

A Hybrid Method for Improvement of Evolutionary Computation (진화 연산의 성능 개선을 위한 하이브리드 방법)

  • 정진기;오세영
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2002.05a
    • /
    • pp.159-165
    • /
    • 2002
  • 진화연산에는 교배, 돌연변이, 경쟁, 선택이 있다. 이러한 과정 중에서 선택은 새로운 개체를 생산하지는 않지만, 모든 해중에서 최적의 해가 될만한 해는 선택하고, 그러지 않은 해는 버리는 판단의 역할을 한다. 따라서 아무리 좋은 해를 만들었다고 해도, 취사 선택을 잘못하면, 최적의 해를 찾지 못하거나, 또 많은 시간이 소요되게 된다. 따라서 본 논문에서는 stochastic한 성질을 갖고 있는 Tournament selection에 Local selection개념을 도입하여, 지역 해에서 벗어나 전역 해를 찾는데, 개선이 될 수 있도록 하였고 Fast Evolutionary Programming의 mutation과정을 개선하고, Genetic Algorithm의 연산자인 crossover와 mutation을 도입하여 Parallel search로 지역 해에서 벗어나 전역 해를 찾는 하이브리드 알고리즘을 제안하고자 한다.

  • PDF

The Design of GA-based TSK Fuzzy Classifier and Its application (GA기반 TSK 퍼지 분류기의 설계 및 응용)

  • 곽근창;김승석;유정웅;전명근
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2001.12a
    • /
    • pp.233-236
    • /
    • 2001
  • In this paper, we propose a TSK-type fuzzy classifier using PCA(Principal Component Analysis), FCM(Fuzzy C-Means) clustering and hybrid GA(genetic algorithm). First, input data is transformed to reduce correlation among the data components by PCA. FCM clustering is applied to obtain a initial TSK-type fuzzy classifier. Parameter identification is performed by AGA(Adaptive Genetic Algorithm) and RLSE(Recursive Least Square Estimate). we applied the proposed method to Iris data classification problems and obtained a better performance than previous works.

  • PDF

A Study on Hybrid Feature Selection in Intrusion Detection System (침입탐지시스템에서 하이브리드 특징 선택에 관한 연구)

  • Han Myeong-Muk
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2006.05a
    • /
    • pp.279-282
    • /
    • 2006
  • 네트워크를 기반으로 한 컴퓨터 시스템이 현대 사회에 있어서 더욱 더 불가결한 역할을 하는 것에 따라, 네트워크 기반 컴퓨터 시스템은 침입자의 침입 목표가 되고 있다. 이를 보호하기 위한 침입탐지시스템(Intrusion Detection System : IDS)은 점차 중요한 기술이 되었다. 침입탐지시스템에서 패턴들을 분석한 후 정상/비정상을 판단 및 예측하기 위해서는 초기단계인 특징추출이나 선택이 매우 중요한 부분이 되고 있다. 본 논문에서는 IDS에서 중요한 부분인 feature selection을 Data Mining 기법인 Genetic Algorithm(GA)과 Decision Tree(DT)를 적용해서 구현했다.

  • PDF

An Evaluation on Pilot Informatization Projects : A View of User Satisfaction (사용자 만족도 관점에서의 정보화 시범사업평가)

  • 양경식;김현수
    • Journal of Information Technology Applications and Management
    • /
    • v.9 no.3
    • /
    • pp.31-46
    • /
    • 2002
  • The objective of this paper is to develop an evaluation model for pilot informatization projects. There are relatively many researches on evaluation models for information systems. These previous researches, however, lack of comprehensive view of informatization Projects and pilot systems. We apply and test a hybrid evaluation model for to measure the success of pilot informatization projects. A user satisfaction model has been used and hypotheses are developed to find relationships of evaluation factors. The hypotheses have been tested with 51 user surveys. The result of this research can give an insight for the evaluation of pilot informatization projects.

  • PDF

A Hybrid Modeling Architecture; Self-organizing Neuro-fuzzy Networks

  • Park, Byoungjun;Sungkwun Oh
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.102.1-102
    • /
    • 2002
  • In this paper, we propose Self-organizing neurofuzzy networks(SONFN) and discuss their comprehensive design methodology. The proposed SONFN is generated from the mutually combined structure of both neurofuzzy networks (NFN) and polynomial neural networks(PNN) for model identification of complex and nonlinear systems. NFN contributes to the formation of the premise part of the SONFN. The consequence part of the SONFN is designed using PNN. The parameters of the membership functions, learning rates and momentum coefficients are adjusted with the use of genetic optimization. We discuss two kinds of SONFN architectures and propose a comprehensive learning algorithm. It is shown that this network...

  • PDF

DES Approach Failure Diagnosis of Pump-valve System (펌프-밸브 시스템의 DES 접근론적 Failure Diagnosis)

  • Son, Hyung-Il;Kim, Ki-Woong;Lee, Seok
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.643-646
    • /
    • 2000
  • As many industrial systems become more complex, it becomes extremely difficult to diagnose the cause of failures. This paper presents a failure diagnosis approach based on discrete event system theory. In particular, the approach is a hybrid of event-based and state-based ones leading to a simpler failure diagnoser with supervisory control capability. The design procedure is presented along with a pump-valve system as an example.

  • PDF

Evolvable Hybrid-ware using FPGA (FPGA를 이용한 진화 하이브리드웨어)

  • 김태훈;이동욱;심귀보
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.05a
    • /
    • pp.51-54
    • /
    • 2003
  • 진화하드웨어는 하드웨어 스스로 진화하여 필요한 회로를 구성한다 회로를 재구성하기 위해서 유전자 알고리즘을 사용한다. 유전자 알고리즘(Genetic Algorithm)은 전역적 탐색을 통하여 해를 구한다. 하지만 유전자 알고리즘은 많은 개체의 평가를 통하여 이루어지기 때문에 수행하는데 시간이 많이 소요된다. 이전의 연구에서 유전자 알고리즘 프로세서를 이용하여 진화하드웨어를 구성했다. 유전자 알고리즘 프로세서는 유연성이 떨어지고 범용적으로 사용하기 어렵다. 본 논문에서는 CPU를 이용하여 유전자 알고리즘 프로세서를 소프트웨어로 제어하는 방법을 제안한다 소프트웨어로 합성한 신호로 GAP의 동작을 제어하기 때문에 유연성을 가질 수 있다 FPGA에 CPU와 유전자 알고리즘 프로세서를 구현하여 one-chip 하드웨어를 구현한다.

  • PDF

혼합 유전알고리즘을 이용한 비선형 최적화문제의 효율적 해법

  • 윤영수;이상용
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.1 no.1
    • /
    • pp.63-85
    • /
    • 1996
  • This paper describes the applications of genetic algorithm to nonlinear constrained optimization problems. Genetic algorithms are combinatorial in nature, and therefore are computationally suitable for treating continuous and idstrete integer design variables. For several problems , the conventional genetic algorithms are ill-defined , which comes from the application of penalty function , encoding and decoding methods, fitness scaling, and premature convergence of solution. Thus, we develope a hybrid genetic algorithm to resolve these problems and present two examples to demonstrate the effectiveness of the methodology developed in this paper.

  • PDF

A Self-Organizing Fuzzy Logic Controller with Hybrid Structure (하이브리드 구조의 자기구성 퍼지제어기)

  • 이평기;박상배
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.03a
    • /
    • pp.31-34
    • /
    • 1998
  • 본 논문에서는 하이브리드 구조를 가지는 자기구성 퍼지제어기를 제안한다. 제안한 방법은 FARMA 제어기에 비해 다음과 같은 장점을 가진다. 하이브리드 구조를 자기구성 퍼지논리 제어기에 도입하므로써 예측출력값을 구할 때 까지의 입축력정보의 부재로 인한 나쁜 응답성능을 개선할 수 있다. 또한 이 방법은 Yager의 t-norm을 이용하여 계산상의 복잡성을 피하고 규칙들의 가중치를 구하기 위해 필요한 Dmax선정의 어려움을 해결한다.

  • PDF