• Title/Summary/Keyword: hybrid systems

Search Result 2,645, Processing Time 0.03 seconds

Synthesis, Characterization and Curing Studies of Thermosetting Epoxy Resin with Amines

  • Lakshmi, B.;Shivananda, K.N.;Mahendra, K.N.
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.8
    • /
    • pp.2272-2278
    • /
    • 2010
  • A new hybrid thermosetting maleimido epoxy compound 4-(N-maleimidophenyl) glycidylether (N-MPGE) is prepared by reacting N-(4-hydroxyphenyl) maleimide (HPM) with Epichlorohydrin by using benzyltrimethylammonium chloride as a catalyst. The resulting compound possesses both the oxirane ring and maleimide group. The curing reaction of these maleimidophenyl glycidylether epoxy compound (N-MPGE) with amines as curing agents such as ethylendiamine (EDA), diethylentriamine (DETA) and triethylenetetramine (TETA), aminoethylpiperazine (AEP) and isophoronediamine, IPDA), are studied. Incorporation of maleimide groups in the epichlorohydrin provides cyclic imide structure and high cross-linking density to the cured resins. The cured samples exhibited good thermal stability, excellent chemical (acid/alkali/solvent) and water absorption resistance. Morphological studies by the SEM technique further confirmed the phase homogeneity net work of the cured systems.

Nanocrystalline $Y_3Al_5O_{12}$:Ce Phosphor-Based White Light-Emitting Diodes Embedded with CdS:Mn/ZnS Core/Shell Quantum Dots

  • Kim, Jong-Uk;Lee, Dong-Kyoon;Lee, Jong-Jin;Yang, Hee-Sun
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.588-590
    • /
    • 2008
  • Yellow-emitting $Y_3Al_5O_{12}$:Ce nanocrystalline phosphor and orange-emitting CdS:Mn/ZnS core/shell quantum dots were prepared by a modified polyol and a reverse micelle chemistry, respectively. To compensate a poor color rendering index of YAG:Ce nanocrystalline phosphor due to the lack of red spectral component, CdS:Mn/ZnS quantum dots were blended into YAG:Ce. Based on spectral evolutions in the blended systems, hybrid white light emitting diodes are fabricated and characterized.

  • PDF

A Fast Screening Algorithm for On-Line Transient Stability Assessment (온라인 과도안정도 판정을 위한 상정사고 고속 스크리닝 알고리즘 개발)

  • Yang, Jung-Dae;Lee, Jong-Seock;Lee, Byung-Jun;Kwon, Sae-Hyuk;Lee, Koung-Guk
    • Proceedings of the KIEE Conference
    • /
    • 2000.11a
    • /
    • pp.104-106
    • /
    • 2000
  • Transient Stability of a power systems is its ability to maintain synchronous operation of machine when subjected to a large disturbance. This paper presents a new methodology for speed-up transient stability evaluation in SIME. SIME is a hybrid direct method including time simulation to enhance flexibility. The First features of the proposed method are that generator grouping can be performed even in very stable cases and that the stability of a contingency can be evaluated from a short period of time simulation results. The second features of the proposed method are that using power-angle trajectory and subdividing contingency classification have improved the screening capability.

  • PDF

A New Hybrid Strategy for the Optimization of Xhemical Processing System

  • Cho, In-Ho;Yoon, En-Sup
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.848-855
    • /
    • 1989
  • By structural comparison of process optimization strategies based on Simultaneous Modular Approach, they can be classified into two groups : the Sequential Module Based Approach and the Two-Tier Approach. The Sequential Module Based Approach needs rigorous models and a set of accurate solutions are guranteed. However, it requires large amount of computation time. In the Two-Tier Approach composed of rigorous and simplified models, optimization calculation uses simplified models, therefore comparatively smaller amount of computation time is required but the obtained solutions may not be accurate. These optimization problems were somewhat improved by the alternate application of the two strategies. In this study, improved optimization strategy is suggested, in which Jacobian Matrix is modified to accomodate the strong points of above mentioned strategies. The results of case study show that this approach is superior to the other strategies.

  • PDF

A real-time operation aiding expert system using the symptom tree and the fault-consequence digraph

  • Oh, Jeon-Keun;Yoon, En-Sup;Choi, Byung-Nam
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.805-812
    • /
    • 1989
  • An efficient diagnostic approach for real-time operation aiding expert system in chemical process plants is discussed. The approach is based on the hybrid of the simplified symptom tree(SST) and the fault consequence digraph(FCD), representation of propagation patterns of fault states. The SST generates fault hypothesis efficiently and the FCD resolve the real fault accurately. Frame based knowledge representation and object-oriented programming make diagnostic system general and efficient. Truth maintenance system enables robust pattern matching and provides enhanced explain facilities. A prototype expert system for supports operation of naphtha furnaces process, called OASYS, has been built and tested to demonstrate this methodology. Utilization of diversified process symbolic data, produced using dynamic normal standards, overcomes the problem of qualitative Boolean reasoning and enhance the applicability.

  • PDF

DEVELOPMENT OF A HYBRID CFD FRAMEDWORK FOR MULTI-PHENOMENA FLOW ANALYSIS AND DESIGN (다중현상 유동 해석 및 설계를 위한 융복합 프레임웍 개발)

  • Hur, Nahm-Keon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.517-523
    • /
    • 2010
  • Recently, the rapid evolution of computational fluid dynamics (CFD) has enabled its key role in industries and predictive sciences. From diverse research disciplines, however, are there strong needs for integrated analytical tools for multi-phenomena beyond simple flow simulation. Based on the concurrent simulation of multi-dynamics, multi-phenomena beyond simple flow simulation. Based on the concurrent simulation of multi-dynamics, multi-physics and multi-scale phenomena, the multi-phenomena CFD technology enables us to perform the flow simulation for integrated and complex systems. From the multi-phenomena CFD analysis, the high-precision analytical and predictive capacity can enhance the fast development of industrial technologies. It is also expected to further enhance the applicability of the simulation technique to medical and bio technology, new and renewable energy, nanotechnology, and scientific computing, among others.

  • PDF

Capacity Design of Accumulator in Hydraulic Hybrid Drive Brake System (유압 하이브리드 구동 시스템의 축압기 용량 설계)

  • 이재구;김정현;김성동
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.04a
    • /
    • pp.15-21
    • /
    • 2001
  • An accumulator in hydraulic systems stores kinetic energy during braking action, and then that controls hasty surge pressure. An energy recovery system using accumulator seems to be advantageous for ERBS due to its high energy density. This study suggests a method to decide suitable accumulator volume for ERBS. The method is based upon energy conservation between kinetic energy of moving inertia and elastic energy of accumulator. The energy conversion was analyzed and a simple formula was derived. A series of computer simulation was done to verify effectiveness of the formula. The results of the simulation work were compared with those of experiments and these results show that the proposed design is effective for decision accumulator volume in ERBS.

  • PDF

An Adaptive Tracking Controller for Vibration Reduction of Flexible Manipulator

  • Sung Yoon-Gyeoung;Lee Kyu-Tae
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.7 no.3
    • /
    • pp.51-55
    • /
    • 2006
  • An adaptive tracking controller is presented for the vibration reduction of flexible manipulator employed in hazardous area by combining input shaping technique with sliding-mode control. The combined approach appears to be robust in the presence of severe disturbance and unknown parameter which will be estimated by least-square method in real time. In a maneuver strategy, it is found that a hybrid trajectory with a combination of low frequency mode and rigid-body mode results in better performance and is more efficient than the traditional rigid body trajectory alone which many researchers have employed. The feasibility of the adaptive tracking control approach is demonstrated by applying it to the simplified model of robot system. For the applications of the proposed technique to realistic systems, several requirements are discussed such as control stability and large system order resulted from finite element modeling.

Assessment of Prognosis and Risk Stratification in Coronary Artery Disease (관상동맥질환의 예후 및 위험도 평가)

  • Lim, Seok-Tae
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.43 no.3
    • /
    • pp.222-228
    • /
    • 2009
  • Risk stratification and assessment of prognosis in patients with known or suspected CAD is of crucial important for the practice of contemporary medicine. Noninvasive testing such as myocardial perfusion scintigraphy, coronary artery calcium scoring or CT coronary angiography is increasingly being used to determine the need for aggressive medical therapy and to select patients for catheterization. The integrated anatomic and functional information may provide more additional information for the cardiologist or other clinician by the improved risk stratification and diagnostic accuracy of integrated techniques. The development of SPECT/CT or PET/CT hybrid systems is therefore of important value for the nuclear cardiology.

A Novel Cryptosystem Based on Steganography and Automata Technique for Searchable Encryption

  • Truong, Nguyen Huy
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.5
    • /
    • pp.2258-2274
    • /
    • 2020
  • In this paper we first propose a new cryptosystem based on our data hiding scheme (2,9,8) introduced in 2019 with high security, where encrypting and hiding are done at once, the ciphertext does not depend on the input image size as existing hybrid techniques of cryptography and steganography. We then exploit our automata approach presented in 2019 to design two algorithms for exact and approximate pattern matching on secret data encrypted by our cryptosystem. Theoretical analyses remark that these algorithms both have O(n) time complexity in the worst case, where for the approximate algorithm, we assume that it uses ⌈(1-ε)m)⌉ processors, where ε, m and n are the error of our string similarity measure and lengths of the pattern and secret data, respectively. In searchable encryption, our cryptosystem is used by users and our pattern matching algorithms are performed by cloud providers.