• Title/Summary/Keyword: hybrid systems

Search Result 2,645, Processing Time 0.027 seconds

Ensuring Sound Numerical Simulation of Hybrid Automata

  • Hur, Yerang;Sim, Jae-Hwan;Kim, Je-Sung;Chai, Jin-Young
    • Journal of Computing Science and Engineering
    • /
    • v.3 no.2
    • /
    • pp.73-87
    • /
    • 2009
  • A hybrid system is a dynamical system in which states can be changed continuously and discretely. Simulation based on numerical methods is the widely used technique for analyzing complicated hybrid systems. Numerical simulation of hybrid systems, however, is subject to two types of numerical errors: truncation error and round-off error. The effect of such errors can make an impossible transition step to become possible during simulation, and thus, to generate a simulation behavior that is not allowed by the model. The possibility of an incorrect simulation behavior reduces con.dence in simulation-based analysis since it is impossible to know whether a particular simulation trace is allowed by the model or not. To address this problem, we define the notion of Instrumented Hybrid Automata (IHA), which considers the effect of accumulated numerical errors on discrete transition steps. We then show how to convert Hybrid Automata (HA) to IRA and prove that every simulation behavior of IHA preserves the discrete transition steps of some behavior in HA; that is, simulation of IHA is sound with respect to HA.

Energy management strategies of a fuel cell/battery hybrid system using fuzzy logics (퍼지 논리를 이용한 연료전지/축전지 하이브리드 시스템의 운전제어)

  • Jeong, Kwi-Seong;Lee, Won-Yong;Kim, Chang-Soo
    • Journal of Hydrogen and New Energy
    • /
    • v.15 no.1
    • /
    • pp.1-11
    • /
    • 2004
  • Hybrid power systems with fuel cells and batteries have the potential to improve the operation efficiency and dynamic response. A proper load management strategy is important to better system efficiency and endurance in hybrid systems. In this paper, a fuzzy logic algorithm has been used to determine the fuel cell output power depending on the external required power and the battery state of charge(SoC). If the required power of the hybrid system is small and the SoC is small, then the greater part of the fuel cell power is used to charge the battery pack. If the required power is relatively big and the SoC is big, then fuel cell and battery are concurrently used to supply the required power. These IF-THEN operation rules are implemented by fuzzy logic for the energy management system of hybrid system. The strategy is evaluated by simulation. The results show that fuzzy logic can be effectively used to optimize the operational efficiency of hybrid system and to maintain the battery SoC properly.

Real-time hybrid testing using model-based delay compensation

  • Carrion, Juan E.;Spencer, B.F. Jr.
    • Smart Structures and Systems
    • /
    • v.4 no.6
    • /
    • pp.809-828
    • /
    • 2008
  • Real-time hybrid testing is an attractive method to evaluate the response of structures under earthquake loads. The method is a variation of the pseudodynamic testing technique in which the experiment is executed in real time, thus allowing investigation of structural systems with time-dependent components. Real-time hybrid testing is challenging because it requires performance of all calculations, application of displacements, and acquisition of measured forces, within a very small increment of time. Furthermore, unless appropriate compensation for time delays and actuator time lag is implemented, stability problems are likely to occur during the experiment. This paper presents an approach for real-time hybrid testing in which time delay/lag compensation is implemented using model-based response prediction. The efficacy of the proposed strategy is verified by conducting substructure real-time hybrid testing of a steel frame under earthquake loads. For the initial set of experiments, a specimen with linear-elastic behavior is used. Experimental results agree well with the analytical solution and show that the proposed approach and testing system are capable of achieving a time-scale expansion factor of one (i.e., real time). Additionally, the proposed method allows accurate testing of structures with larger frequencies than when using conventional time delay compensation methods, thus extending the capabilities of the real-time hybrid testing technique. The method is then used to test a structure with a rate-dependent energy dissipation device, a magnetorheological damper. Results show good agreement with the predicted responses, demonstrating the effectiveness of the method to test rate-dependent components.

Characteristics of Hybrid Expression in Fashion Illustration (패션 일러스트레이션의 혼성적 표현 특성에 관한 연구)

  • Kim, Soon-Ja
    • Journal of the Korea Fashion and Costume Design Association
    • /
    • v.15 no.1
    • /
    • pp.59-74
    • /
    • 2013
  • Post-modern society leads us to accept diversity and variability instead of pursuit of the absolute truth, beauty or classical value systems, thus leading to hybrid phenomena. The purpose of this study is to analyze characteristics and expressive effects of hybrid expressions through which to provide conceptual bases for interpreting expanded meanings of fashion illustrations that express aesthetic concepts of hybrid culture. Hybrid refers to a condition on which diverse elements are mixed with each other, so any one element can not dominate others. It is often used to create something unique and new by a combination of unprecedented things. Hybrid can be classified into four categories: temporal hybrid, spatial hybrid, morphological hybrid and hybrid of different genres. Temporal hybrid from a combination of past and present in fashion illustration includes temporal blending by repetition and juxtaposition. Spatial hybrid shows itself in the form of inter-penetration and interrelationship by means of projection, overlapping, juxtaposition and multiple space. Morphological hybrid expresses itself through combination of heterogenous forms and restructuring of deformed forms. Hybrid of different genres in fashion illustration applies various graphic elements or photos within the space, and represents blending of arts and daily living. Such hybrid expressions in fashion illustrations reflect the phenomena of diversity and variability of post-modern society. Hybrid expressions in fashion illustrations predict endless possibility of expressing new images through combining various forms or casual elements and can develop toward a new creative technique.

  • PDF

Scalable Hybrid Recommender System with Temporal Information (시간 정보를 이용한 확장성 있는 하이브리드 Recommender 시스템)

  • Ullah, Farman;Sarwar, Ghulam;Kim, Jae-Woo;Moon, Kyeong-Deok;Kim, Jin-Tae;Lee, Sung-Chang
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.12 no.2
    • /
    • pp.61-68
    • /
    • 2012
  • Recommender Systems have gained much popularity among researchers and is applied in a number of applications. The exponential growth of users and products poses some key challenges for recommender systems. Recommender Systems mostly suffer from scalability and accuracy. The accuracy of Recommender system is somehow inversely proportional to its scalability. In this paper we proposed a Context Aware Hybrid Recommender System using matrix reduction for Hybrid model and clustering technique for predication of item features. In our approach we used user item-feature rating, User Demographic information and context information i.e. specific time and day to improve scalability and accuracy. Our Algorithm produce better results because we reduce the dimension of items features matrix by using different reduction techniques and use user demographic information, construct context aware hybrid user model, cluster the similar user offline, find the nearest neighbors, predict the item features and recommend the Top N- items.

Performance Analysis of Adaptive Modulation Systems with Truncated Type-II Hybrid ARQ Scheme and MRC Diversity Techniques in Nakagami Fading Environment (나카가미 페이딩 환경에서 Truncated Type-II Hybrid ARQ 방식과 최대비 합성 다이버시티 기법에 의한 적응변조방식의 성능 분석)

  • 양재훈;강희조
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.12 no.5
    • /
    • pp.810-816
    • /
    • 2001
  • This paper proposes a Truncated Type-II Hybrid ARQ scheme using an adaptive modulation system to achieve high throughput data transmission systems for mobile communication systems. In this paper, the adaptive modulation system analyzed in Nakagami (m-distribution) fading channel environment. The adaptive modulation system controls the modulation level and symbol rate according to the Nakagami fading parameter(m). When the received $E_bN_0$ is high or the Nakagami fading parameter m is high, the propose system selects higher modulation level and higher symbol rate to increase throughput. On the other hand, this system selects lower modulation level and lower symbol rate to prevent throughput performance degradation when the received $E_bN_0$ is low. The modulation method have been adopted QPSK(Quadrature Phase Shift Keying), 16 QAM(Quadrature Amplitude Modulation), 64 QAM, 256 QAM. Therefore, Adaptive Modulation Systems with Truncated Type-II Hybrid ARQ Scheme is proper for mobile and radio for mobile and radio data communication system that require high reliability and delay-limited applications.

  • PDF

A Modularized Equalizer for Supercapacitor Strings in Hybrid Energy Storage Systems

  • Gao, Zhigang;Jiang, Fenlin
    • Journal of Power Electronics
    • /
    • v.16 no.4
    • /
    • pp.1469-1482
    • /
    • 2016
  • In hybrid energy storage systems, supercapacitors are usually connected in series to meet the required voltage levels. Equalizers are effective in prolonging the life of hybrid energy storage systems because they eliminate the voltage imbalance on cells. This study proposes a modularized equalizer, which is based on a combination of a half-bridge inverter, an inductor, and two auxiliary capacitors. The proposed equalizer inherits the advantages of inductor-based equalization systems, but it also offers unique merits, such as low switching losses and an easy-to-use control algorithm. The zero-voltage switching scheme is analyzed, and the power model is established. A fixed-frequency operation strategy is proposed to simplify the control and lower the cost. The switching patterns and conditions for zero-voltage switching are discussed. Simulation results based on PSIM are presented to verify the validity of the proposed equalizer. An equalization test for two supercapacitor cells is performed. An experimental hybrid energy storage system, which consists of batteries and supercapacitors, is established to verify the performance of the proposed equalizer. The analysis, simulation results, and experimental results are in good agreement, thus indicating that the circuit is practical.

Fuzzy Logic Based Energy Management For Wind Turbine, Photo Voltaic And Diesel Hybrid System

  • Talha, Muhammad;Asghar, Furqan;Kim, Sung Ho
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.26 no.5
    • /
    • pp.351-360
    • /
    • 2016
  • Rapid population growth with high living standards and high electronics use for personal comfort has raised the electricity demand exponentially. To fulfill this elevated demand, conventional energy sources are shifting towards low production cost and long term usable alternative energy sources. Hybrid renewable energy systems (HRES) are becoming popular as stand-alone power systems for providing electricity in remote areas due to advancement in renewable energy technologies and subsequent rise in prices of petroleum products. Wind and solar power are considered feasible replacement to fossil fuels as the prediction of the fuel shortage in the near future, forced all operators involved in energy production to explore this new and clean source of power. Presented paper proposes fuzzy logic based Energy Management System (EMS) for Wind Turbine (WT), Photo Voltaic (PV) and Diesel Generator (DG) hybrid micro-grid configuration. Battery backup system is introduced for worst environmental conditions or high load demands. Dump load along with dump load controller is implemented for over voltage and over speed protection. Fuzzy logic based supervisory control system performs the power flow control between different scenarios such as battery charging, battery backup, dump load activation and DG backup in most intellectual way.

Development of a Unified Research Platform for Plug-In Hybrid Electrical Vehicle Integration Analysis Utilizing the Power Hardware-in-the-Loop Concept

  • Edrington, Chris S.;Vodyakho, Oleg;Hacker, Brian A.
    • Journal of Power Electronics
    • /
    • v.11 no.4
    • /
    • pp.471-478
    • /
    • 2011
  • This paper addresses the establishment of a kVA-range plug-in hybrid electrical vehicle (PHEV) integration test platform and associated issues. Advancements in battery and power electronic technology, hybrid vehicles are becoming increasingly dependent on the electrical energy provided by the batteries. Minimal or no support by the internal combustion engine may result in the vehicle being occasionally unable to recharge the batteries during highly dynamic driving that occurs in urban areas. The inability to sustain its own energy source creates a situation where the vehicle must connect to the electrical grid in order to recharge its batteries. The effects of a large penetration of electric vehicles connected into the grid are still relatively unknown. This paper presents a novel methodology that will be utilized to study the effects of PHEV charging at the sub-transmission level. The proposed test platform utilizes the power hardware-in-the-loop (PHIL) concept in conjunction with high-fidelity PHEV energy system simulation models. The battery, in particular, is simulated utilizing a real-time digital simulator ($RTDS^{TM}$) which generates appropriate control commands to a power electronics-based voltage amplifier that interfaces via a LC-LC-type filter to a power grid. In addition, the PHEV impact is evaluated via another power electronic converter controlled through $dSPACE^{TM}$, a rapid control systems prototyping software.

Mixing Collaborative and Hybrid Vision Devices for Robotic Applications (로봇 응용을 위한 협력 및 결합 비전 시스템)

  • Bazin, Jean-Charles;Kim, Sung-Heum;Choi, Dong-Geol;Lee, Joon-Young;Kweon, In-So
    • The Journal of Korea Robotics Society
    • /
    • v.6 no.3
    • /
    • pp.210-219
    • /
    • 2011
  • This paper studies how to combine devices such as monocular/stereo cameras, motors for panning/tilting, fisheye lens and convex mirrors, in order to solve vision-based robotic problems. To overcome the well-known trade-offs between optical properties, we present two mixed versions of the new systems. The first system is the robot photographer with a conventional pan/tilt perspective camera and fisheye lens. The second system is the omnidirectional detector for a complete 360-degree field-of-view surveillance system. We build an original device that combines a stereo-catadioptric camera and a pan/tilt stereo-perspective camera, and also apply it in the real environment. Compared to the previous systems, we show benefits of two proposed systems in aspects of maintaining both high-speed and high resolution with collaborative moving cameras and having enormous search space with hybrid configuration. The experimental results are provided to show the effectiveness of the mixing collaborative and hybrid systems.