• 제목/요약/키워드: hybrid surface

검색결과 1,262건 처리시간 0.029초

하이브리드 이산화티탄의 자기조직체 형성공법을 이용하여 제조된 하이브리드 이산화티탄의 자외선차단 상승효과 (Synergy Effect of Sun Protection Factor Using Method of Forming Self-Assembly of Hybrid Titanium Dioxide)

  • 조현대;박수남
    • 한국응용과학기술학회지
    • /
    • 제31권4호
    • /
    • pp.748-758
    • /
    • 2014
  • 화장료의 UV 차단과 은폐효과를 갖는 이산화티탄을 사용하여 자기조직체 형성공법을 적용한 하이브리드 이산화티탄을 제조하고 형태, 성질, 공정의 최적조건과 자외선차단 개선을 확인하였다. 하이브리드 이산화티탄은 마이크로 이산화티탄(250~300nm)의 표면에 나노 이산화티탄(20~30nm)을 자기조직체 형성공법을 이용해 결합시킨, 이산화티탄 대 이산화티탄의 결합체를 말한다. 하이브리드 이산화티탄 제조의 최적조건을 알아내기 위해 (-)을 띄는 마이크로 이산화티탄의 표면에 양이온의 링크로써 $AlCl_3$ 를 농도별로 조정하고, 그에 따른 마이크로와 나노 이산화티탄의 투입비율을 달리하여 각각의 조건에서 만들어진 시료를 광학분석, 입도분석, 전위차분석 등을 이용해 확인하고 최적의 제조 조건을 알 수 있었다. 최적의 제조 조건에서 만들어진 하이브리드 이산화티탄의 자외선차단 상승효과를 확인하기 위하여 하이브리드 이산화티탄이 첨가된 화장료와 사용된 하이브리드 이산화티탄과 같은 비율의 마이크로와 나노 이산화티탄을 첨가한 화장료의 SPF in-vitro 를 측정하였고, 15%내지 30%의 자외선차단 상승 효과를 확인하였다.

형광 리포터를 활용한 효모 단백질 잡종 기법 개발 (Yeast two-hybrid assay with fluorescence reporter)

  • 박성균;서수련;황병준
    • 미생물학회지
    • /
    • 제55권3호
    • /
    • pp.199-205
    • /
    • 2019
  • Yeast two-hybrid는 특정 단백질에 대한 상호작용 파트너 단백질의 선별을 위한 방법으로 개발되었다. 하지만 대규모 단백질 상호작용체 분석을 수행하기에 요구되는 노동과 대량의 한천배지 사용에 따른 문제에 의해 널리 사용되지 못하고 있다. 따라서 본 연구에서는 새로운 리포터 시스템을 yeast two-hybrid 방법에 도입하여 fluorescence-activated cell sorting (FACS) 또는 magnetic-activated cell sorting (MACS)를 이용하여 상호작용 파트너 단백질을 포함하는 효모 클론을 손쉽게 선별할 수 있도록 하였다. 새로운 리포터 시스템은 c-myc 항원 결정기가 총 10번 반복되는 형태로 효모 표면에 발현되도록 하였으며, p53과 SV40 T항원을 이용한 실험을 통하여 리포터 단백질의 정상적인 발현을 flow cytometry 분석을 통하여 확인하였다. 따라서, 새로운 리포터 시스템을 도입한 yeast two-hybrid 방법은 대규모 상호작용체 분석을 위해 필요한 노력을 현저히 줄일 수 있을 것으로 기대한다.

미송 대단면재의 가열법에 따른 진공건조 특성 (Vacuum Drying Characteristics Using Different Heating Methods for Douglas-fir Timber)

  • 정희석;엄창득;소범준
    • Journal of the Korean Wood Science and Technology
    • /
    • 제32권4호
    • /
    • pp.18-26
    • /
    • 2004
  • 변장 14 cm 재장 2.4 m인 대단면재의 전도가열, 고주파가열 및 복합가열에 의한 진공건조특성을 조사하였다. 건조속도는 복합가열에서 가장 컸고, 고주파가열에서 가장 적었다. 비에너지는 고주파가열에서 가장 컸고, 전도가열에서 가장 적었다. 진공건조목재의 횡단방향 함수율분포는 전도가열과 복합가열의 경우 불록한 형태를 나타냈으나, 고주파가열의 경우는 한쪽 표층에서 반대쪽 표층으로 향해 증가하는 경향을 나타내었다. 건조목재의 재장방향 함수율은 전도가열과 복합가열의 경우 횡단면이 중심부위보다 낮았고 고주파가열의 경우 횡단면이 중심보다 높았다. 표면할렬과 횡단면할렬은 전도가열진공건조에서 가장 심하였다. 내부할렬은 어떠한 가열방법에 의한 건조에서도 발생하지 않았다. 복합가열 진공건조 특성은 전도가열과 고주파가열간의 절충된 중간적 경향을 나타냈다.

나노복합 태양전지를 위한 CdTe 전착 거동의 순환전류법을 이용한 전기화학적 분석 (Electrochemical Analysis of CdTe Deposition Using Cyclovoltammetric Method for Hybrid Solar Cell Application)

  • 김성훈;한원근;진홍성;이재호
    • 한국표면공학회지
    • /
    • 제42권5호
    • /
    • pp.197-202
    • /
    • 2009
  • The electrodeposition in acidic aqueous electrolyte bath of cadmium telluride on gold electrodes has been studied by electrochemical analysis. Conventional cyclic voltammetry using potentiostat is considered as a reliable method to study electrochemical behavior of electrodeposition of CdTe. In this paper, the mechanism of CdTe deposition and its cyclic voltammetry were studied with the Te ion concentration, temperature, potential, and scan rate. We also investigated surface morphologies using FESEM and atomic composition of Cd and Te using EDS. Atomic composition of Cd and Te were varied with Te ion concentration in the electrolyte.

질화처리된 저탄소강 레이저 용접부의 기공 감소 (Porosity Reduction in Laser Welding of Nitrided Carbon Steel)

  • 안영남;김철희;이원범;김정한
    • Journal of Welding and Joining
    • /
    • 제31권6호
    • /
    • pp.71-76
    • /
    • 2013
  • Gas nitriding is a surface hardening process where nitrogen is introduced into the surface of a ferrous alloy. During fusion welding of nitrided carbon steel, the nitride inside weld metal is dissolved and generates nitrogen gas, which causes porosities - blow holes and pits. In this study, several laser welding processes such as weaving welding, two-pass welding, dual beam welding and laser-arc hybrid welding were investigated to elongate the weld pool to enhance nitrogen gas evacuation. The surface pits were successfully eliminated with elongated weld pool. However blowholes inside the weld metal were effective reduced but not fully disappeared.

In-House Developed Surface-Guided Repositioning and Monitoring System to Complement In-Room Patient Positioning System for Spine Radiosurgery

  • Kim, Kwang Hyeon;Lee, Haenghwa;Sohn, Moon-Jun;Mun, Chi-Woong
    • 한국의학물리학회지:의학물리
    • /
    • 제32권2호
    • /
    • pp.40-49
    • /
    • 2021
  • Purpose: This study aimed to develop a surface-guided radiosurgery system customized for a neurosurgery clinic that could be used as an auxiliary system for improving the accuracy, monitoring the movements of patients while performing hypofractionated radiosurgery, and minimizing the geometric misses. Methods: RGB-D cameras were installed in the treatment room and a monitoring system was constructed to perform a three-dimensional (3D) scan of the body surface of the patient and to express it as a point cloud. This could be used to confirm the exact position of the body of the patient and monitor their movements during radiosurgery. The image from the system was matched with the computed tomography (CT) image, and the positional accuracy was compared and analyzed in relation to the existing system to evaluate the accuracy of the setup. Results: The user interface was configured to register the patient and display the setup image to position the setup location by matching the 3D points on the body of the patient with the CT image. The error rate for the position difference was within 1-mm distance (min, -0.21 mm; max, 0.63 mm). Compared with the existing system, the differences were found to be as follows: x=0.08 mm, y=0.13 mm, and z=0.26 mm. Conclusions: We developed a surface-guided repositioning and monitoring system that can be customized and applied in a radiation surgery environment with an existing linear accelerator. It was confirmed that this system could be easily applied for accurate patient repositioning and inter-treatment motion monitoring.

Crystallization and Melting Behavior of Silica Nanoparticles and Poly(ethylene 2,6-naphthalate) Hybrid Nanocomposites

  • Kim Jun-Young;Kim Seong-Hun;Kang Seong-Wook;Chang Jin-Hae;Ahn Seon-Hoon
    • Macromolecular Research
    • /
    • 제14권2호
    • /
    • pp.146-154
    • /
    • 2006
  • Organic and inorganic hybrid nanocomposites based on poly(ethylene 2,6-naphthalate) (PEN) and silica nanoparticles were prepared by a melt blending process. In particular, polymer nanocomposites consisting mostly of cheap conventional polyesters with very small quantities of inorganic nanoparticles are of great interest from an industrial perspective. The crystallization behavior of PEN/silica hybrid nanocomposites depended significantly on silica content and crystallization temperature. The activation energy of crystallization for PEN/silica hybrid nanocomposites was decreased by incorporating a small quantity of silica nanoparticles. Double melting behavior was observed in PEN/silica hybrid nanocomposites, and the equilibrium melting temperature decreased with increasing silica content. The fold surface free energy of PEN/silica hybrid nanocomposites decreased with increasing silica content. The work of chain folding (q) for PEN was estimated as $7.28{\times}10^{-20}J$ per molecular chain fold, while the q values for the PEN/silica 0.9 hybrid nanocomposite was $3.71{\times}10^{-20}J$, implying that the incorporation of silica nanoparticles lowers the work required to fold the polymer chains.

AI7075/CFRP 하이브리드 복합재료의 기계적강도 평가에 관한 연구 (A Study on Mechanical Strength in AI7075/CFRP Hybrid Composite)

  • 유재환
    • 한국안전학회지
    • /
    • 제12권4호
    • /
    • pp.57-62
    • /
    • 1997
  • The combined structure of hybrid composite made through the bonding process of materials of different properties greatly defines its mechanical characteristics, as the results of the experiments on materials of different properties show much dissimilarity. When carbon/epoxy materials are applied to hybrid composite, the carbon materials helps to improve the mechanical properties of the hybrid composite, and the epoxy reduces its fracture strain and impact resistance. Carbon fiber which is now in general commercialization is classified as high modulus or high strength system, and its manufacturing methods are various. The study of the materials having combined structure is focused on the numerical analysis of the layers of bonding surface in materials with difference modulus. The hybrid composite made through the multilayered bonding of reinforced aluminium sheets with aramid fiber now faces the marketing phase, and especially its excellent fatigue resistance and mechanical properties promote active researches on the similar products of hybrid composite. This study aims to investigate the effects of CFRP volume ratio and fiber's orientation over the properties of mechanical strength and fatigue life of the hybrid composite, AI7075/CFRP. To carry out this study, static tensile and fatigue tests were given to some of the panels which, made through the co-cure processing in an autoclave, have different CFRP volume ratio and carbon fiber orientations.

  • PDF

Reduced Hybrid Ring Coupler Using Surface Micromachining Technology for 94-GHz MMIC Applications

  • Uhm, Won-Young;Beak, Tae-Jong;Ryu, Keun-Kwan;Kim, Sung-Chan
    • Journal of information and communication convergence engineering
    • /
    • 제14권4호
    • /
    • pp.246-251
    • /
    • 2016
  • In this study, we developed a reduced 94 GHz hybrid ring coupler on a GaAs substrate in order to demonstrate the possibility of the integration of various passive components and MMICs in the millimeter-wave range. To reduce the size of the hybrid ring coupler, we used multiple open stubs on the inside of the ring structure. The chip size of the reduced hybrid ring coupler with multiple open stubs was decreased by 62% compared with the area of the hybrid ring coupler without open stubs. Performance in terms of the loss, isolation, and phase difference characteristics exhibited no significant change after the use of the multiple open stubs on the inside of the ring structure. The reduced hybrid ring coupler showed excellent coupling loss of $3.87{\pm}0.33dB$ and transmission loss of $3.77{\pm}0.72dB$ in the measured frequency range of 90-100 GHz. The isolation and reflection were -48 dB and -32 dB at 94 GHz, respectively. The phase differences between two output ports were $180^{\circ}{\pm}1^{\circ}$ at 94 GHz.

THE NEW THICK-FILM HYBRID CONVERTERS FOR HALOGEN AND FLUORESCENT LAMPS

  • Gondek, J.;Dzialek, K.;Kocol, J.;Kawa, B.
    • 한국마이크로전자및패키징학회:학술대회논문집
    • /
    • 한국마이크로전자및패키징학회 2001년도 Proceedings of 6th International Joint Symposium on Microeletronics and Packaging
    • /
    • pp.57-65
    • /
    • 2001
  • Economical consumption of energy, longer life of lamps, higher lighting comfort and new aesthetic of illumination is subject of numerous research and development works. The halogen lamps are an example of positive solution some of above mentioned problems. The electronic transformers are more frequent used for their supply. In comparison with conventional transformers they have less weight, less volume and 60% less power tosses. Their advantages are particular visible, when the hybrid technique is applied. The paper presents the results of engineering research and development works carried out ill Private Institute of Electronic Engineering, in R. & D. Center for Hybrid Microelectronics and Resistors and in Technical School of Communications in Krakow, in the field of the design and exploitation tests of hybrid converters 220V AC /12V DC (electronic transformers) and electronic ballasts destined for the supply of halogen lamps 20W to 150W and fluorescent lamps respectively. To perform the converters, thick film technology and surface mount technology were used. For the protection of converter electronic circuit the thick film temperature sensor and transistors were applied. Moreover the paper presents the base application circuits of elaborated converters, their technical parameters and exploitation results. The development perspectives of hybrid domain of hybrid circuits are also discussed.

  • PDF