• Title/Summary/Keyword: hybrid surface

Search Result 1,262, Processing Time 0.034 seconds

Evaluation of Bond Strength for FRP Hybrid Bar According to Coating Methods using Silica Sands (규사 코팅 방법에 따른 FRP Hybrid Bar의 부착강도 평가)

  • Jung, Kyu-San;Park, Ki-Tae;You, Young-Jun;Seo, Dong-Woo;Kim, Byeong-Cheol;Park, Joon-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.12
    • /
    • pp.118-125
    • /
    • 2017
  • In this study, we examined the bond performance of FRP Hybrid Bars. FRP Hybrid Bars are developed by wrapping glass fibers on the outside of deformed steel rebars to solve the corrosion problem. The surface of the FRP Hybrid Bars was coated with resin and silica sand to enhance its adhesion bonding performance with concrete. Various parameters, such as the resin type, viscosity, and size of the silica sand, were selected in order to find the optimal surface condition of the FRP Hybrid Bars. For the bonding test, FRP Hybrid Bars were embedded in a concrete block with a size of 200 mm3 and the maximum load and slip were measured at the interface between the FRP Hybrid Bar and concrete through the pull-out test. From the experimental results, the maximum load and bond strength were calculated as a function of each experimental variable and the resin type, viscosity and size of the silica sand giving rise to the optimal bond performance were evaluated. The maximum bond strength of the specimen using epoxy resin and No. 5 silica sand was about 35% higher than that of the deformed rebar.

SURFACE ROUGHNESS OF UNIVERSAL COMPOSITES AFTER POLISHING PROCEDURES (전.구치 겸용 혼합형 복합레진의 두 가지 연마법에 따른 표면조도)

  • Lee, Jae-Yong;Shin, Dong-Hoon
    • Restorative Dentistry and Endodontics
    • /
    • v.28 no.5
    • /
    • pp.369-377
    • /
    • 2003
  • The aim of this study was to evaluate the effect of two polishing methods and chemical conditioning on the surface of hybrid composites. Ninety cylindrical specimens (diameter:8mm, depth:2mm) were made with three hybrid composites-Filtek Z250, Tetric Ceram. DenFil. Specimens for each composite were randomly divided into three treatment subgroups $^{\circled1}$ Mylar strip (no treatment). $^{\circled2}$ Sof-Lex XT system, $^{\circled3}$ PoGo system. Average surface roughness(Ra) was taken using a surface profilometer at the time of setting and after immersion into 0.02N lactic acid for 1 week and 1 month. Representative specimens were examined by scanning electron microscopy. The data were analyzed using ANOVA and Scheffe's tests at 0.05% significance level. The results were as follows:1. Mylar strip resulted in smoother surface than PoGo and Sof-Lex system (p<0.001). Sof-Lex system gave the worst results. 2. Tetric Ceram was smoother than DenFil and Z250 when cured under only mylar strip. However, it was significantly rougher than other materials when polished with PoGo system. 3. All materials showed rough surface after storage in 0.02N lactic acid, except groups polished with a PoGo system. The PoGo system gave a superior polish than Sof-Lex system for the three composites. However. the correlation to clinical practice may be limited, since there are several processes. such as abrasive, fatigue, and corrosive mechanisms. Thus. further studies are needed for polishing technique under in vivo conditions.

Formation of Nano-structure and Compressive Residual Stress on AISI304 Stainless Steel by Ultrasonic Nanocrystalline Surface Modification (초음파 나노표면개질 공정기술에 의한 AISI304 스테인리스강의 표면나노구조화 및 압축잔류응력 형성)

  • Cho, In-Shik;Dong, Ji-Ling;Yoo, Dae-Hwang;Suh, Jung-Hwa;Amanov, Auezhan;Shin, Kee-Sam;Lee, Chang-Soon;Pyoun, Young-Shik;Park, In-Gyu
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.9
    • /
    • pp.807-812
    • /
    • 2010
  • In this paper, the Ultrasonic Nanocrystalline Surface Modification (UNSM) surface treatment process was used to induce compressive residual stress and nanocrystalline structure by severe plastic deformation on the UNSM-treated surface. The test results for AISI304 stainless steel demonstrated that the grain size was found to be 23 nm, the dislocation density was increased by $0.2085{\times}10^{18}\;m^{-2}$, and the volume fraction of martensite is defined as 27.6% from austenite so that the surface hardness of the surface is increased from 200 Hv up to 515 Hv. The initial tensile residual stress is changed from 300 MPa to a compressive residual stress of 500 MPa after UNSM treatment. In addition, UNSM was applied under five various conditions, and the results of those conditions were defined as a function of depth quantitative.

An Adaptive FLIP-Levelset Hybrid Method for Efficient Fluid Simulation (효율적인 유체 시뮬레이션을 위한 FLIP과 레벨셋의 적응형 혼합 기법)

  • Lim, Jae-Gwang;Kim, Bong-Jun;Hong, Jeong-Mo
    • Journal of the Korea Computer Graphics Society
    • /
    • v.19 no.3
    • /
    • pp.1-11
    • /
    • 2013
  • Fluid Implicit Particle (FLIP) method is used in Visual Effect(VFX) industries frequently because FLIP based simulation show high performance with good visual quality. However in large-scale fluid simulations, the efficiency of FLIP method is low because it requires many particles to represent large volume of water. In this papers, we propose a novel hybrid method of simulating fluids to supplement this drawback. To improve the performance of the FLIP method by reducing the number of particles, particles are deployed inside thin layers of the inner surface of water volume only. The coupling between less-disspative solutions of FLIP method and viscosity solution of level set method is achieved by introducing a new surface reconstruction method motivated by surface reconstruction method[1] and moving least squares(MLS) method[2]. Our hybrid method can generate high quality of water simulations efficiently with various multiscale features.

Correlation between Leakage Current of Organic Treated Insulators and Grain Size of Pentacene Deposited film (유기물 처리 절연막의 누설전류 및 펜타센 증착 표면에 생긴 그레인 크기 사이의 상관관계)

  • Oh Teresa;Kim Hong-Bae;Son Jae-Gu
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.6 s.348
    • /
    • pp.18-22
    • /
    • 2006
  • The inspection of surface properties under n-octadecyltrichlorosilane treated $SiO_2$ film was carried out by current-voltage characteristic and the scanning electron microscope. The voltage at zero current in low electric field is the lowest at 0.3 % OTS treated $SiO_2$ film with hybrid type. $SiO_2$ films changed from inorganic to hybrid or organic properties according to the increase of OTS content. OTS treated $SiO_2$ films with hybrid properties decreased the leakage currents, and the grain size of pentacene deposited sample was also the most small at the hybrid properties. The perpendicular generation of pentacene molecular was related with the surface of insulators. The surface with hybrid properties decreased the grain size, but that with inorganic or organic properties increased the grain size.

Characteristics of Surface Roughness Based on Wire Vibration and Wire-cut Electric Discharge Machining of Aluminum Alloy 6061 (I) (알루미늄 합금 6061에서 와이어 진동부가에 의한 와이어 컷 방전가공에 따른 표면 거칠기 특성 (I))

  • Ryu, Cheong-Won;Choi, Seong-Dae
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.2
    • /
    • pp.59-66
    • /
    • 2015
  • The production of high value-added products requires efficient processing and this constant demand for complex shape processing has led to the need for hybrid processing. In this study, the surface characteristics of hybrid machining, which combines wire-cut E.D.M and vibration, are examined. The selected experimental parameters are verticality, waveform, amplitude, peak current and frequency. The experimental results provide a guideline for selecting reasonable machining parameters. Surface roughness was improved by increasing the amplitude of the vibration.

A Study on the Inverse Radiation Analysis in a Cylindrical Enclosure (원통형상에서의 역복사 해석에 관한 연구)

  • Kim, Ki-Wan;Baek, Seung-Wook;Ryou, Hong-Sun
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1516-1521
    • /
    • 2004
  • An inverse boundary analysis of surface radiation in an axisymmetric cylindrical enclosure has been conducted in this study. Net energy exchange method was used to calculate the radiative heat flux on each surface, and a hybrid genetic algorithm was adopted to minimize an objective function, which is expressed by sum of square errors between estimated and measured heat fluxes on the design surface. We have examined the effects of the measurement error as well as the number of measurement points on the estimation accuracy.

  • PDF

Synthesis of SiNx:H films in PECVD using RF/UHF hybrid sources

  • Shin, K.S.;Sahu, B.B.;Lee, J.S.;Hori, M.;Han, Jeon G.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.136.1-136.1
    • /
    • 2015
  • In the present study, UHF (320 MHz) in combination with RF (13.56 MHz) plasmas was used for the synthesis of hydrogenated silicon nitride (SiNx:H) films by PECVD process at low temperature. RF/UHF hybrid plasmas were maintained at a fixed pressure of 410 mTorr in the N2/SiH4 and N2/SiH4/NH3 atmospheres. To investigate the radical generation and plasma formation and their control for the growth of the film, plasma diagnostic tools like vacuum ultraviolet absorption spectroscopy (VUVAS), optical emission spectroscopy (OES), and RF compensated Langmuir probe (LP) were utilized. Utilization of RF/UHF hybrid plasmas enables very high plasma densities ~ 1011 cm-3 with low electron temperature. Measurements using VUVAS reveal the UHF source is quite effective in the dissociation of the N2 gas to generate more active atomic N. It results in the enhancement of the Si-N bond concentration in the film. Consequently, the deposition rate has been significantly improved up to 2nm/s for the high rate synthesis of highly transparent (up to 90 %) SiNx:H film. The films properties such as optical transmittance and chemical composition are investigated using different analysis tools.

  • PDF

Comparing the performance of two hybrid deterministic/Monte Carlo transport codes in shielding calculations of a spent fuel storage cask

  • Lai, Po-Chen;Huang, Yu-Shiang;Sheu, Rong-Jiun
    • Nuclear Engineering and Technology
    • /
    • v.51 no.8
    • /
    • pp.2018-2025
    • /
    • 2019
  • This study systematically compared two hybrid deterministic/Monte Carlo transport codes, ADVANTG/MCNP and MAVRIC, in solving a difficult shielding problem for a real-world spent fuel storage cask. Both hybrid codes were developed based on the consistent adjoint driven importance sampling (CADIS) methodology but with different implementations. The dose rate distributions on the cask surface were of primary interest and their predicted results were compared with each other and with a straightforward MCNP calculation as a baseline case. Forward-Weighted CADIS was applied for optimization toward uniform statistical uncertainties for all tallies on the cask surface. Both ADVANTG/MCNP and MAVRIC achieved substantial improvements in overall computational efficiencies, especially for gamma-ray transport. Compared with the continuous-energy ADVANTG/MCNP calculations, the coarse-group MAVRIC calculations underestimated the neutron dose rates on the cask's side surface by an approximate factor of two and slightly overestimated the dose rates on the cask's top and side surfaces for fuel gamma and hardware gamma sources because of the impact of multigroup approximation. The fine-group MAVRIC calculations improved to a certain extent and the addition of continuous-energy treatment to the Monte Carlo code in the latest MAVRIC sequence greatly reduced these discrepancies. For the two continuous-energy calculations of ADVANTG/MCNP and MAVRIC, a remaining difference of approximately 30% between the neutron dose rates on the cask's side surface resulted from inconsistent use of thermal scattering treatment of hydrogen in concrete.

Physical characteristics of ceramic/glass-polymer based CAD/CAM materials: Effect of finishing and polishing techniques

  • Ekici, Mugem Asli;Egilmez, Ferhan;Cekic-Nagas, Isil;Ergun, Gulfem
    • The Journal of Advanced Prosthodontics
    • /
    • v.11 no.2
    • /
    • pp.128-137
    • /
    • 2019
  • PURPOSE. The aim of this study was to compare the effect of different finishing and polishing techniques on water absorption, water solubility, and microhardness of ceramic or glass-polymer based computer-aided design and computer-aided manufacturing (CAD/CAM) materials following thermocycling. MATERIALS AND METHODS. 150 disc-shaped specimens were prepared from three different hybrid materials and divided into five subgroups according to the applied surface polishing techniques. All specimens were subjected up to #4000 grit SiC paper grinding. No additional polishing has been done to the control group (Group I). Other polishing procedures were as follows: Group II: two-stage diamond impregnated polishing discs; Group III: yellow colored rubber based silicone discs; Group IV: diamond polishing paste; and Group V: Aluminum oxide polishing discs. Subsequently, 5000-cycles of thermocycling were applied. The analyses were conducted after 24 hours, 7 days, and 30 days of water immersion. Water absorption and water solubility results were analyzed by two-way ANOVA and Tukey post-hoc tests. Besides, microhardness data were compared by Kruskal-Wallis and MannWhitney U tests (P<.05). RESULTS. Surface polishing procedures had significant effects on water absorption and solubility and surface microhardness of resin ceramics (P<.05). Group IV exhibited the lowest water absorption and the highest microhardness values (P<.05). Immersion periods had no effect on the microhardness of hybrid ceramic materials (P>.05). CONCLUSION. Surface finishing and polishing procedures might negatively affect physical properties of hybrid ceramic materials. Nevertheless, immersion periods do not affect the microhardness of the materials. Final polishing by using diamond polishing paste can be recommended for all CAD/CAM materials.