• Title/Summary/Keyword: hybrid scaffold.

Search Result 42, Processing Time 0.045 seconds

Surface Hydrolysis of Fibrous Poly(${\epsilon}$-caprolactone) Scaffolds for Enhanced Osteoblast Adhesion and Proliferation

  • Park, Jeong-Soo;Kim, Jung-Man;Lee, Sung-Jun;Lee, Se-Geun;Jeong, Young-Keun;Kim, Sung-Eun;Lee, Sang-Cheon
    • Macromolecular Research
    • /
    • v.15 no.5
    • /
    • pp.424-429
    • /
    • 2007
  • A procedure for the surface hydrolysis of an electrospun poly(${\epsilon}$-caprolactone) (PCL) fibrous scaffold was developed to enhance the adhesion and proliferation of osteoblasts. The surface hydrolysis of fibrous scaffolds was performed using NaOH treatment for the formation of carboxyl groups on the fiber surfaces. The hydrolysis process did not induce deformation of the fibers, and the fibers retained their diameter. The cell seeding density on the NaOH-treated PCL fibrous scaffolds was more pronounced than on the non-treated PCL fibers used as a control. The alkaline phosphatase activity, osteocalcin and a mineralization assay strongly supported that the surface-hydrolyzed PCL fibrous scaffolds provided more favorable environments for the proliferation and functions of osteoblasts compared to the non-treated PCL fibrous scaffolds use as a control.

The Scaffolding Protein WAVE1 Associates with Kinesin 1 through the Tetratricopeptide Repeat (TPR) Domain of the Kinesin Light Chain (KLC) (Kinesin Light Chain (KLC)의 Tetratricopeptide Repeat (TPR) 도메인을 통한 Scaffold 단백질 WAVE1과 Kinesin 1의 결합)

  • Jang, Won Hee;Jeong, Young Joo;Urm, Sang-Hwa;Seog, Dae-Hyun
    • Journal of Life Science
    • /
    • v.26 no.8
    • /
    • pp.963-969
    • /
    • 2016
  • Kinesin superfamily proteins (KIFs) are microtubule-dependent molecular motor proteins essential for the intracellular transport of organelles and protein complexes in cells. Kinesin 1 is a member of those KIFs that transport various cargoes, including organelles, synaptic vesicles, neurotransmitter receptors, cell signaling molecules, and mRNAs through interaction between its light chain subunit and the cargoes. Kinesin light chains (KLCs) are non-motor subunits that associate with the kinesin heavy chain (KHC) dimer. KLCs interact with many different binding proteins, but their particular binding proteins have not yet been fully identified. We used the yeast two-hybrid assay to identify proteins that interact with the tetratricopeptide repeat (TPR) domain of KLC1. We found an interaction between the TPR domain of KLC1 and Wiskott-Aldrich syndrome protein family member 1 (WAVE1), a member of the WASP/WAVE family involved in regulation of actin cytoskeleton. WAVE1 bound to the six TPR domain-containing regions of KLC1 and did not interact with KHCs (KIF5A, KIF5B, and KIF5C) in the yeast two-hybrid assay. The carboxyl (C)-terminal verprolin-cofilin-acidic (VCA) domain of WAVE1 is essential for interaction with KLC1. Also, other WAVE isoforms (WAVE2 and WAVE3) interacted with KLC1 in the yeast two-hybrid assay. When co-expressed in HEK-293T cells, WAVE1 co-localized with KLC1 and co-immunoprecipitated with KLC1 and KIF5B. These results suggest that kinesin 1 motor protein may transport WAVE complexes or WAVE-coated cargoes in cells.

Cadms/SynCAMs/Necls/TSLCs Interact with Multi-PDZ Domain Protein MUPP1 (Cadms/SynCAMs/Necls/TSLCs와 multi-PDZ domain protein MUPP1 단백질의 결합)

  • Jang, Won Hee;Jeong, Young Joo;Choi, Sun Hee;Kim, Sang-Jin;Urm, Sang-Hwa;Moon, Il Soo;Seog, Dae-Hyun
    • Journal of Life Science
    • /
    • v.24 no.12
    • /
    • pp.1276-1283
    • /
    • 2014
  • Cell adhesion molecules determine the cell-cell binding and the interactions between cells and extracellular signals. Cell-cell junctional complexes, which maintain the structural integrity of tissues, consist of more than 50 proteins including multi-PDZ domain protein 1 (MUPP1). MUPP1 contains 13 postsynaptic density-95/disks large/zonula occludens-1 (PDZ) domains and serves a scaffolding function for transmembrane proteins and cytoskeletal proteins or signaling proteins, but the mechanism how MUPP1 links and stabilizes the juxtamembrane proteins has not yet been elucidated. We used the yeast two-hybrid system to identify proteins that interact with PDZ domains of MUPP1. We found an interaction between MUPP1 and cell adhesion molecule 1 (Cadm1, also known as SynCAM1, Necl-2, or TSLC1). Cadm1 bound to the second PDZ domain of MUPP1. The carboxyl (C)-terminal end of Cadm1 has a type II PDZ-association motif (-Y-F-I) which was essential for the interaction with MUPP1 in the yeast two-hybrid assay. MUPP1 also bound to the C-terminal cytoplasmic tail region of other Cadm family members (Cadm2, Cadm3, and Cadm4). In addition, these protein-protein interactions were observed in the glutathione S-transferase (GST) pull-down assay and by co-immunoprecipitation. Anti-MUPP1 antibody co-immunoprecipitated Cadm1 and Cadm4 with MUPP1 from mouse brain extracts. These results suggest that MUPP1 could mediate interaction between Cadms and cytoskeletal proteins.

Fabrication High Covered and Uniform Perovskite Absorbing Layer With Alkali Metal Halide for Planar Hetero-junction Perovskite Solar Cells

  • Lee, Hongseuk;Kim, Areum;Kwon, Hyeok-chan;Moon, Jooho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.427-427
    • /
    • 2016
  • Organic-inorganic hybrid perovskite have attracted significant attention as a new revolutionary light absorber for photovoltaic device due to its remarkable characteristics such as long charge diffusion lengths (100-1000nm), low recombination rate, and high extinction coefficient. Recently, power conversion efficiency of perovskite solar cell is above 20% that is approached to crystalline silicon solar cells. Planar heterojunction perovskite solar cells have simple device structure and can be fabricated low temperature process due to absence of mesoporous scaffold that should be annealed over 500 oC. However, in the planar structure, controlling perovskite film qualities such as crystallinity and coverage is important for high performances. Those controlling methods in one-step deposition have been reported such as adding additive, solvent-engineering, using anti-solvent, for pin-hole free perovskite layer to reduce shunting paths connecting between electron transport layer and hole transport layer. Here, we studied the effect of alkali metal halide to control the fabrication process of perovskite film. During the morphology determination step, alkali metal halides can affect film morphologies by intercalating with PbI2 layer and reducing $CH3NH3PbI3{\cdot}DMF$ intermediate phase resulting in needle shape morphology. As types of alkali metal ions, the diverse grain sizes of film were observed due to different crystallization rate depending on the size of alkali metal ions. The pin-hole free perovskite film was obtained with this method, and the resulting perovskite solar cells showed higher performance as > 10% of power conversion efficiency in large size perovskite solar cell as $5{\times}5cm$. X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and inductively coupled plasma optical emission spectrometry (ICP-OES) are analyzed to prove the mechanism of perovskite film formation with alkali metal halides.

  • PDF

Phosphorylation-Dependent Septin Interaction of Bni5 is Important for Cytokinesis

  • Nam, Sung-Chang;Sung, Hye-Ran;Kang, Seung-Hye;Joo, Jin-Young;Lee, Soo-Jae;Chung, Yeon-Bok;Lee, Chong-Kil;Song, Suk-Gil
    • Journal of Microbiology
    • /
    • v.45 no.3
    • /
    • pp.227-233
    • /
    • 2007
  • In budding yeast, septin plays as a scaffold to recruits protein components and regulates crucial cellular events including bud site selection, bud morphogenesis, Cdc28 activation pathway, and cytokinesis. Phosphorylation of Bni5 isolated as a suppressor for septin defect is essential to Swe1-dependent regulation of bud morphogenesis and mitotic entry. The mechanism by which Bni5 regulates normal septin function is not completely understood. Here, we provide evidence that Bni5 phosphorylation is important for interaction with septin component Cdc11 and for timely delocalization from septin filament at late mitosis. Phosphorylation-deficient bni5-4A was synthetically lethal with $hof1{\Delta}$. bni5-4A cells had defective structure of septin ring and connected cell morphology, indicative of defects in cytokinesis. Two-hybrid analysis revealed that bni5-4A has a defect in direct interaction with Cdc11 and Cdc12. GFP-tagged bni5-4A was normally localized at mother-bud neck of budded cells before middle of mitosis. In contrast, at large-budded telophase cells, bni5-4A-GFP was defective in localization and disappeared from the neck approximately 2 min earlier than that of wild type, as evidenced by time-lapse analysis. Therefore, earlier delocalization of bni5-4A from septin filament is consistent with phosphorylation-dependent interaction with the septin component. These results suggest that timely de localization of Bni5 by phosphorylation is important for septin function and regulation of cytokinesis.

SAFB1, an RBMX-binding protein, is a newly identified regulator of hepatic SREBP-1c gene

  • Omura, Yasushi;Nishio, Yoshihiko;Takemoto, Tadashi;Ikeuchi, Chikako;Sekine, Osamu;Morino, Katsutaro;Maeno, Yasuhiro;Obata, Toshiyuki;Ugi, Satoshi;Maegawa, Hiroshi;Kimura, Hiroshi;Kashiwagi, Atsunori
    • BMB Reports
    • /
    • v.42 no.4
    • /
    • pp.232-237
    • /
    • 2009
  • Sterol regulatory element-binding protein (SREBP)-1c plays a crucial role in the regulation of lipogenic enzymes in the liver. We previously reported that an X-chromosome-linked RNA binding motif (RBMX) regulates the promoter activity of Srebp-1c. However, still unknown was how it regulates the gene expression. To elucidate this mechanism, we screened the cDNA library from mouse liver by yeast two-hybrid assay using RBMX as bait and identified scaffold attachment factor B1 (SAFB1). Immunoprecipitation assay demonstrated binding of SAFB1 to RBMX. Chromatin immunoprecipitation assay showed binding of both SAFB1 and RBMX to the upstream region of Srebp-1c gene. RNA interference of Safb1 reduced the basal and RBMX-induced Srebp-1c promoter activities, resulting in reduced Srebp-1c gene expression. The effect of SAFB1 overexpression on Srebp-1c promoter was found only in the presence of RBMX. These results indicate a major role for SAFB1 in the activation of Srebp-1c through its interaction with RBMX.

Wdpcp, a Protein that Regulates Planar Cell Polarity, Interacts with Multi‐PDZ Domain Protein 1 (MUPP1) through a PDZ Interaction (Planar cell polarity 조절단백질 Wdpcp와 multi-PDZ domain protein 1 (MUPP1)의 PDZ 결합)

  • Jang, Won Hee;Jeong, Young Joo;Choi, Sun Hee;Yea, Sung Su;Lee, Won Hee;Kim, Mooseong;Kim, Sang-Jin;Urm, Sang-Hwa;Moon, Il Soo;Seog, Dae-Hyun
    • Journal of Life Science
    • /
    • v.26 no.3
    • /
    • pp.282-288
    • /
    • 2016
  • Protein-protein interactions regulate the subcellular localization and function of receptors, enzymes, and cytoskeletal proteins. Proteins containing the postsynaptic density-95/disks large/zonula occludens-1 (PDZ) domain have potential to act as scaffolding proteins and play a pivotal role in various processes, such as synaptic plasticity, neural guidance, and development, as well as in the pathophysiology of many diseases. Multi-PDZ domain protein 1 (MUPP1), which has 13 PDZ domains, has a scaffolding function in the clustering of surface receptors, organization of signaling complexes, and coordination of cytoskeletal dynamics. However, the cellular function of MUPP1 has not been fully elucidated. In the present study, a yeast two-hybrid system was used to identify proteins that interacted with the N-terminal PDZ domain of MUPP1. The results revealed an interaction between MUPP1 and Wdpcp (formerly known as Fritz). Wdpcp was identified as a planar cell polarity (PCP) effector, which is known to have a role in collective cell migration and cilia formation. Wdpcp bound to the PDZ1 domain but not to other PDZ domains of MUPP1. The C-terminal end of Wdpcp was essential for the interaction with MUPP1 in the yeast two-hybrid assay. This interaction was further confirmed in a glutathione S-transferase (GST) pull-down assay. When coexpressed in HEK-293T cells, Wdpcp was coimmunoprecipitated with MUPP1. In addition, MUPP1 colocalized with Wdpcp at the same subcellular region in cells. Collectively, these results suggest that the MUPP1-Wdpcp interaction could modulate actin cytoskeleton dynamics and polarized cell migration.

Muskelin Interacts with Multi-PDZ Domain Protein 1 (MUPP1) through the PDZ Domain (Muskelin과 multi-PDZ domain protein 1 (MUPP1) 단백질의 PDZ 도메인을 통한 결합)

  • Jang, Won Hee;Jeong, Young Joo;Choi, Sun Hee;Lee, Won Hee;Kim, Mooseong;Kim, Sang-Jin;Urm, Sang-Hwa;Moon, Il Soo;Seog, Dae-Hyun
    • Journal of Life Science
    • /
    • v.25 no.5
    • /
    • pp.594-600
    • /
    • 2015
  • Protein-protein interactions have a critical role in the regulation of many cellular functions. Postsynaptic density-95/disks large/zonula occludens-1 (PDZ) domain is one of domains that mediate protein-protein interactions. PDZ domains typically bind to the specific motif at the carboxyl (C)-terminal end of partner proteins. Multi-PDZ domain protein 1 (MUPP1), which has 13 PDZ domains, serves a scaffolding function for structure proteins and signaling proteins, but the cellular function of MUPP1 has not been fully elucidated. We used the yeast two-hybrid system to identify proteins that interact with PDZ domains of MUPP1. We found an interaction between MUPP1 and muskelin. Muskelin was recently identified as a GABAA receptor (GABAAR) α1 subunit binding protein and known to have a role in receptor endocytosis and degradation. Muskelin bound to the 3rd PDZ domain, but not to other PDZ domains of MUPP1. The C-terminal end of muskelin was essential for the interaction with MUPP1 in the yeast two-hybrid assay. When co-expressed in HEK-293T cells, muskelin but not the C-terminal deleted muskelin was co-immunoprecipitated with MUPP1. In addition, MUPP1 co-localized with muskelin at the same subcellular region in cells. These findings collectively suggest that MUPP1 or its interacting proteins could modulate GABAAR trafficking and turnover through the interaction with muskelin.

A ubiquitin-proteasome system as a determination factor involved in methylmercury toxicity

  • Hwang, Gi-Wook
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2006.11a
    • /
    • pp.46-54
    • /
    • 2006
  • The methylmercury (MeHg) is a toxic environmental pollutant, causing serious neurological and developmental effects in humans. Recent epidemiological studies have indicated that ingestion of MeHg in fish during pregnancy can result in neuroethological effects in the offspring. However, the mechanism underlying the MeHg-toxicity is not fully understood. To elucidate the mechanisms of toxicity of MeHg and of defense against MeHg, we searched for factors that determine the sensitivity of yeast cells to MeHg, and found that overexpression of Cdc34, a ubiquitin-conjugating enzyme (E2) that is a component of the ubiquitin-proteasome (UP) system, induces a resistance to MeHg toxicity in both yeast and human cells. The UP system is involved in the intracellular degradation of proteins. When Cdc34 is overexpressed in cells, ubiquitination reactions are activated and the degradation of certain proteins by the UP system is enhanced. Therefore, it seems likely that certain as-yet-unidentified proteins that increase MeHg toxicity might exist in cons and that toxicity might be reduced by the enhanced degradation of such proteins, mediated by the UP system, when Cdc34 is overexpressed. SCF ubiquitin-ligase is a component of UP system and consists of Skpl, the scaffold protein Cdc53, the RING-finger protein Hrt1, and one member of the family of F-box proteins. The F-box proteins directly bind to the substrates and are the determinants of substrate specificity of SCF. Therefore, we searched for the f-box protein that cofers resistance to MeHg, and found that overexpression of Hrt3 or Yi1224w induced resistance to MeHg toxicity in yeast cells. Since the protein(5) that enhance toxicity of MeHg might plausibly be induced in substrates of both f-box proteins, we next searched for substrate proteins that are recognized by Hrt3 or Y1r224w using two-hybrid screen. We found that Did3 or Crsl interacts with Hrt3; and Eno2 interacts with Yir224w. The yeast cells that overexpressed each those proteins showed hypersensitivity to MeHg, respectively, indicating that those proteins enhance the MeHg toxicity. Both Dld3 and Eno2 are proteins involved in the synthesis of pyruvate, and overexpression of both proteins might induce increase in interacellular levels of pyruvate. Deletion of Yi1006w that transports pyruvate into the mitochondria induced aresistance to MeHg. These results suggest that the promotion of the pyruvate irdlowinto the mitochondria might enhance MeHg toxicity. This study providesimportant keyfor the elucidauon of the molecular mechanism of MeHg toxicity.

  • PDF

Preparation and Characterization of Small Intestine Submucosa Powder Impregnated Poly(L-lactide) Scaffolds: The Application for Tissue Engineered Bone and Cartilage

  • Khang, Gilson;Rhee, John M.;Shin, Philkyung;Kim, In Young;Lee, Bong;Lee, Sang Jin;Lee, Young Moo;Lee, Hai Bang;Lee, Ilwoo
    • Macromolecular Research
    • /
    • v.10 no.3
    • /
    • pp.158-167
    • /
    • 2002
  • In order to endow with new bioactive functionality from small intestine submucosa (SIS) powder as natural source to poly (L-lactide) (PLA) and poly (lactide-co-glycolide) (PLGA) synthetic biodegradable polymer, porous SIS/PLA and SIS/PLGA as natural/synthetic composite scaffolds were prepared by means of the solvent casting/salt leaching methods for the possibility of the application of tissue engineered bone and cartilage. A uniform distribution of good interconnected pores from the surface to core region was observed the pore size of 40~500 ${\mu}{\textrm}{m}$ independent with SIS amount using the solvent casting/salt leaching method. Porosities, specific pore areas as well as pore size distribution also were almost same. After the fabrication of SIS/PLA hybrid scaffolds, the wetting properties was greatly enhanced resulting in more uniform cell seeding and distribution. Five groups as PGA non-woven mesh without glutaraldehyde (GA) treatment, PLA scaffold without or with GA treatment, and SIS/PLA (Code No.3 ; 1 : 12 of salt content, (0.4 : 1 of SIS content, and 144 ${\mu}{\textrm}{m}$ of median pore size) without or with GA treatment were implanted into the back of nude mouse to observe the effect of SIS on the induction of cells proliferation by hematoxylin and eosin, and von Kossa staining for 8 weeks. It was observed that the effect of SIS/PLA scaffolds with GA treatment on bone induction are stronger than PLA scaffolds, that is to say, in the order of PLA/SIS scaffolds with GA treatment > PLA/SIS scaffolds without GA treatment > PGA nonwoven > PLA scaffolds only with GA treatment = PLA scaffolds only without GA treatment for the osteoinduction activity. The possible explanations are (1) many kinds of secreted, circulating, and extracellular matrix-bound growth factors from SIS to significantly affect critical processes of tissue development and differentiation, (2) the exposure of SIS to GA resulted in significantly calcification, and (3) peri-implant fibrosis due to covalent bonding between collagen molecule by crosslinking reaction. In conclusion, it seems that SIS plays an important role for bone induction in SIS/PLA scaffolds for the application of tissue engineering area.