• Title/Summary/Keyword: hybrid resin

Search Result 331, Processing Time 0.021 seconds

SELF-ADHESION OF LOW-VISCOSITY COMPOSITES TO DENTIN SURFACE (상아질에 대한 저점도 복합레진의 자가접착에 관한 연구)

  • Cho, Tae-Hee;Choi, Kyoung-Kyu;Park, Sang-Hyuk;Park, Sang-Jin
    • Restorative Dentistry and Endodontics
    • /
    • v.28 no.3
    • /
    • pp.209-221
    • /
    • 2003
  • The objectiveness of this study was to evaluate whether low-viscosity composite can bond effectively to dentin surface without bonding resin. The low-viscosity composites being 50wt% filler content were made by the inclusion of bonding resin of two self-etching systems(Cleafil SE Bond, Unifil Bond) varied with contents as 0, 10, 20, 30, 40, 50wt%. Exposed dentin surfaces of extracted 3rd molars are used. Dentin bond strengths were measured. The tests were carried out with a micro-shear device placed testing machine at a CHS of 1mm/min after a low-viscosity composite was filled into an iris cut from micro tygon tubing with internal diameter approximately 0.8mm and height of 1.0mm. 1 Flexural strength and modulus was increased with the addition of bonding resin. 2. Micro-shear bond strength to dentin was improved according to content of bonding resin irrespective of applying or not bonding resin in bonding procedure, and that of Clearfil SE Bond groups was higher than Unifil Bond. 3. There were no significant difference whether use of each bonding resin in bonding procedure for S-40, S-50, U-50(p>0.05). 4. In SEM examination, resin was well infiltrated into dentin after primed with self-etching primer only for S-50 and U-50 in spite of the formation of thinner hybrid layer. Low viscosity composite including some functional monomer may be used as dentin bonding resin without an intermediary bonding agent. It makes a simplified bonding procedure and foresees the possibility of self-adhesive restorative material.

TENSILE STREGNTH BETWEEN MACHINABLE CERAMIC AND DENTIN CEMENTED WITH LUTING COMPOSITE RESIN CEMENTS (합착용 복합레진시멘트로 합착한 Machinable Ceramic과 상아질 사이의 인장강도에 대한 실험적 연구)

  • Cho, Byeong-Hoon
    • Restorative Dentistry and Endodontics
    • /
    • v.23 no.1
    • /
    • pp.487-501
    • /
    • 1998
  • In the case of CAD/CAM ceramic inlay restorations, if isthmus width is widened too much, it may cause fracture of remaining tooth structure or loss of bonding at the luting interface because of excessive displacement of buccal or lingual cusps under occlusal loads. So to clarify the criterior of widening isthmus width, this study was designed to test the tensile bond strength and bond failure mode between dentin and ceramic cemented with luting composite resin cements. Cylindrical ceramic blocks(Vita Cerec Mark II, d=4mm) were bonded to buccal dentin of 40 freshly extracted third molars with 4 luting composite resin cements(group1 : Scotchbond Resin Cement/Scotchbond Multi-Purpose, group2 : Duolink Resin Cement/ All-Bond 2, group3: Bistite Resin Cement/Ceramics Primer, and group4:Superbond C&B). Tensile bond test was done under universal testing machine using bonding and measuring alignment blocks(${\phi}ilo$ & Urn, 1992). After immersion of fractured samples into 1 % methylene blue for 24 hours, failure mode was analysed under stereomicroscope and SEM. Results: The tensile bond strength of goup 1, 2 & 4 was $13.97{\pm}2.90$ MPa, $16.49{\pm}3.90$ MPa and $16.l7{\pm}4.32$ MPa, respectively. There was no statistical differences(p>0.05). But, group 3 showed significantly lower bond stregnth($5.98{\pm}1.l7$ MPa, p<0.05). In almost all samples, adhesive fractures between dentin and resin cements were observed. But, in group 1, 2 & 4, as bond strength increased, cohesive fracture within resin cement was observed simultaneously. And, in group 3, as bond strength decreased, cohesive fracture between hybrid layer and composite resin cement was also observed. Cohesive fracture within dentin and porcelain adhesive fracture were not observed. In conclusion, although adhesive cements were used in CAD/CAM -fabricated ceramic inlay restorations, the conservative priciples of cavity preparation must be obligated.

  • PDF

Formability Evaluation of the Vacuum Resin Transfer Molding of a CFRP Composite Automobile Seat Cross Part (탄소섬유복합재료의 시트크로스 부품에서 진공수지주입성형에 의한 성형성 평가)

  • Kim, Kun-Young;Kwak, Sung-Hun;Han, Gyu-Dong;Park, Jin-Seok;Cho, Jun-Haeng;Lee, Chang-Hoon;Kang, Myung-Chang
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.3
    • /
    • pp.24-29
    • /
    • 2017
  • In this study, a seat cross member was fabricated by optimizing the resin transfer molding processing of CFRP (Carbon Fiber Reinforced Plastics) materials. This seat cross member is used in automotive underbody parts and provides side impact support. The seat cross was manufactured via vacuum resin transfer molding. The process included 1min of resin injection, 8 mins of heating, and 1 min of cooling, for a total molding time of 10mins. Tensile test results showed an average breaking load of 21.50kN, a tensile strength of 404 MPa, and an elastic modulus of 46.2 GPa. As a result, the CFRP seat cross provides the same strength as a similar steel part, but weighs 42% less.

Effect of surface treatment and luting agent type on shear bond strength of titanium to ceramic materials

  • Karaokutan, Isil;Ozel, Gulsum Sayin
    • The Journal of Advanced Prosthodontics
    • /
    • v.14 no.2
    • /
    • pp.78-87
    • /
    • 2022
  • PURPOSE. This study aimed to compare the effect of different surface treatments and luting agent types on the shear bond strength of two ceramics to commercially pure titanium (Cp Ti). MATERIALS AND METHODS. A total of 160 Cp Ti specimens were divided into 4 subgroups (n = 40) according to surface treatments received (control, 50 ㎛ airborne-particle abrasion, 110 ㎛ airborne-particle abrasion, and tribochemical coating). The cementation surfaces of titanium and all-ceramic specimens were treated with a universal primer. Two cubic all-ceramic discs (lithium disilicate ceramic (LDC) and zirconia-reinforced lithium silicate ceramic (ZLC)) were cemented to titanium using two types of resin-based luting agents: self-cure and dual-cure (n = 10). After cementation, all specimens were subjected to 5000 cycles of thermal aging. A shear bond strength (SBS) test was conducted, and the failure mode was determined using a scanning electron microscope. Data were analyzed using three-way ANOVA, and the Tukey-HSD test was used for post hoc comparisons (P < .05). RESULTS. Significant differences were found among the groups based on surface treatment, resin-based luting agent, and ceramic type (P < .05). Among the surface treatments, 50 ㎛ air-abrasion showed the highest SBS, while the control group showed the lowest. SBS was higher for dual-cure resin-based luting agent than self-cure luting agent. ZLC showed better SBS values than LDC. CONCLUSION. The cementation of ZLC with dual-cure resin-based luting agent showed better bonding effectiveness to commercially pure titanium treated with 50 ㎛ airborne-particle abrasion.

The Variation of Isoenzymes and Morphological Characteristics of Needle, Cone and Seed According to Resin Duct Index in Pinus densiflora and Pinus thunbergii (소나무 및 곰솔의 수지구지수(樹脂溝脂數)에 따른 침엽(針葉), 구과(毬果) 및 종자(種子)의 형태적(形態的) 특성(特性)과 동위효소(同位酵素)의 변이(變異))

  • Son, Doo Sik;Park, Sang Jun;Hwang, Jae Woo
    • Journal of Korean Society of Forest Science
    • /
    • v.79 no.4
    • /
    • pp.424-430
    • /
    • 1990
  • The variation of needle, cone and seed characteristics and of allelic frequency in isoenzyme, ADH, ME and PGI, according to different resin duct index in Pinus densiflora, Pinus thunbergii and their hybrids was analyzed. The results obtained were as follows : 1. With increase of number of resin ducts, morphological characteristics such as needle length, needle sheath length, cone size, seed size, seed wing size, 1000 seeds weight, etc. tended to he increased, while number of stomata row in needle to be decreased. 2. As the results of discriminant analysis for the morphological characteristics of needle, cone and seed, most individuals are generally coincided with number of resin duct mostly in Pinus densiflora were not. 3. According to the canonical discriminant function obtained from the morphological characteristics in Pinus densiflora, Pinus thunbergii and their hybrids including introgressive hybrid, the resin duct index, 1000 seeds weight, cone size and neelde sheath length characterized fairly their species. 4. With increase of resin duct index, hybrid index tended to be higher. The results obtained from the discriminant analysis and the hybrid index were nearly same each other. 5. With increase of number of resin duct, the allelic frequencies for isoenzyme, ADH-$B_2$, ME-$A_2$ and PGI-$B_1$. $B_2$ tended to increase but those of ADH-$B_3$, ME-$A_4$, and PGI-$B_3$, to decrease. It is thought that this increase of frequency for the former four isoenzymes was resulted in introgressive gene flow from Pinus thunbergii to Pines densiflora and accordingly the frequency of latter three isoenzymes tended to decrease.

  • PDF

Influence of Angle Ply Orientation on the Flexural Strength of Basalt and Carbon Fiber Reinforced Hybrid Composites

  • Mengal, Ali Nawaz;Karuppanan, Saravanan
    • Composites Research
    • /
    • v.28 no.1
    • /
    • pp.1-5
    • /
    • 2015
  • In this paper the influence of fiber orientation of basalt and carbon inter-ply fabrics on the flexural properties of hybrid composite laminates was experimentally investigated. Four types of basalt/carbon/epoxy inter-ply hybrid composite laminates with varying angle ply orientation of reinforced basalt fiber and fixed orientation of carbon fiber were fabricated using hand lay-up technique. Three point bending test was performed according to ASTM 7264. The fracture surface analysis was carried out by scanning electron microscope (SEM). The results obtained from the four laminates were compared. Lay-up pattern of $[0B/+30B/-30B/0C]_S$ exhibits the best properties in terms of flexural strength and flexural modulus. Scanning electron microscopy results on the fracture surface showed that the interfacial de-bonding between the fibers and epoxy resin is a dominant fracture mode for all fiber lay-up schemes.

Preparation of Unsaturated Polyester-based Hybrid Gel-Coats Containing Urethane Acrylate and Their Coating Performance

  • Kim, Ji-Hee;Baek, Seung-Suk;Kim, Oh Young;Park, Dong Hyup;Hwang, Seok-Ho
    • Elastomers and Composites
    • /
    • v.54 no.3
    • /
    • pp.247-251
    • /
    • 2019
  • Two different urethane acrylates (mono-acrylate and di-acrylate) were used to prepare unsaturated polyester-based hybrid gel-coats. The physical properties and surface characteristics of these gel-coats were investigated on the basis of the content and type of urethane acrylate. The set-to-touch time increased and the physical properties (surface hardness and tensile strength) decreased with an increase in the urethane acrylate content. However, the type of urethane acrylate did not affect these parameters. It was found that the optimal urethane acrylate content for the application of unsaturated polyester-based hybrid gel-coats is ~10 wt%.

Effect of Water Absorption on the Tensile Properties of Carbon-Glass/Epoxy Hybrid Composite in Low Temperature (탄소-유리/에폭시 하이브리드 복합재의 저온 인장 특성에 미치는 수분의 영향)

  • Jung, Hana;Kim, Yonjig
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.10
    • /
    • pp.729-734
    • /
    • 2012
  • This study investigated the effect of water absorption on the tensile properties of carbon-glass/epoxy hybrid composites at room temperature and $-30^{\circ}C$. To investigate the effect of the position of glass fabric in the hybrid composite on the tensile properties, the stacking pattern of the fiber fabrics for reinforcing was created in three different ways: (a) glass fabrics sandwiched between carbon fabrics, (b) carbon fabrics sandwiched between glass fabrics and (c) alternative layers of carbon and glass fabrics. They were manufactured by a vacuum-assisted resin transfer molding (VARTM) process. The results showed that there was surprisingly little difference in tensile strength at the two different temperatures with dry and wet conditions. However, the water absorption into the hybrid system affected the tensile properties of the hybrid composites at RT and $-30^{\circ}C$. When the glass fabrics were at the outermost layers, the hybrid composite had the lowest tensile properties. This is attributed to the fact that the composite had a relatively high water absorption rate.

Experimental and analytical study on improvement of flexural strength of polymer concrete filled GFRP box hybrid members

  • Ali Saribiyik;Ozlem Ozturk;Ferhat Aydin;Yasin Onuralp Ozkilic;Emrah Madenci
    • Steel and Composite Structures
    • /
    • v.50 no.4
    • /
    • pp.475-487
    • /
    • 2024
  • The usage of fiber-reinforced polymer materials increases in the construction sector due to their advantages in terms of high mechanical strength, lightness, corrosion resistance, low density and high strength/density ratio, low maintenance and painting needs, and high workability. In this study, it is aimed to improve mechanical properties of GFRP box profiles, produced by pultrusion method, by filling the polymer concrete into them. Within the scope of study, hybrid use of polymer concrete produced with GFRP box profiles was investigated. Hybrid pressure and bending specimens were produced by filling polymer concrete (polyester resin manufactured with natural sand and stone chips) into GFRP box profiles having different cross-sections and dimensions. Behavior of the produced hybrid members was investigated under bending and compression tests. Hollow GFRPxx profiles, polymer-filled hybrid members, and nominative polymeric concrete specimens were tested as well. The behavior of the specimens under pressure and bending tests, and their load bearing capacities, deformations and changes in toughness were observed. According to the test results; It was deduced that hybrid design has many advantages over its component materials as well as superior physical and mechanical properties.

Adsorption Properties for Heavy Metals Using Hybrid Son Exchange Fibers with Sulfonated PONF-g-Styrene by Radiation Polymerization and Cation Exchange Resin (방사선 중합 설폰화 PONF-g-스티렌과 양이온교환수지 복합 이온교환섬유의 중금속 흡착 특성)

  • Baek, Ki-Wan;Cho, In-Hee;Nho, Young-Chang;Hwang, Taek-Sung
    • Polymer(Korea)
    • /
    • v.30 no.6
    • /
    • pp.525-531
    • /
    • 2006
  • In this study, Sulfonated PONF-g-styrene ion exchange fibers were synthesized by radiation induced graft copolymerization. And also, hybride ion exchange fibers, which was combined sulfonated PONF-g-styrene fibers and cationic ion exchange resin, were fabricated by hot melt adhesion method and then their adsorption properties were investigated. ion exchange capacity and water content of hybrid ion exchange fibers increased as compared with those of bead and ion exchange fiber. Their maximum values were 4.76 meq/g and 23.5%, respectively. Adsorption breakthrough time for mercury of hybrid ion exchange fiber was slower than those of bead resin and fibrous ion exchanger. It's value was 130 minutes. Their breakthrough time become short as increasing of pH, and concentration. The initial breakthrough time was observed before and after 10 minutes as increasing of concentration. The adsorption of hybrid ion exchange fibers for $Hg^{2+}\;Pb^{2+},\;Cd^{2+}$ among heavy metals in the mixed solution was observed before 20 min. And also, The adsorption for $Hg^{2+}$ among the heavy metals by hybride ion exchange fibers was observed.