• Title/Summary/Keyword: hybrid optimization technique

Search Result 131, Processing Time 0.024 seconds

An optimal discrete-time feedforward compensator for real-time hybrid simulation

  • Hayati, Saeid;Song, Wei
    • Smart Structures and Systems
    • /
    • v.20 no.4
    • /
    • pp.483-498
    • /
    • 2017
  • Real-Time Hybrid Simulation (RTHS) is a powerful and cost-effective dynamic experimental technique. To implement a stable and accurate RTHS, time delay present in the experiment loop needs to be compensated. This delay is mostly introduced by servo-hydraulic actuator dynamics and can be reduced by applying appropriate compensators. Existing compensators have demonstrated effective performance in achieving good tracking performance. Most of them have been focused on their application in cases where the structure under investigation is subjected to inputs with relatively low frequency bandwidth such as earthquake excitations. To advance RTHS as an attractive technique for other engineering applications with broader excitation frequency, a discrete-time feedforward compensator is developed herein via various optimization techniques to enhance the performance of RTHS. The proposed compensator is unique as a discrete-time, model-based feedforward compensator. The feedforward control is chosen because it can substantially improve the reference tracking performance and speed when the plant dynamics is well-understood and modeled. The discrete-time formulation enables the use of inherently stable digital filters for compensator development, and avoids the error induced by continuous-time to discrete-time conversion during the compensator implementation in digital computer. This paper discusses the technical challenges in designing a discrete-time compensator, and proposes several optimal solutions to resolve these challenges. The effectiveness of compensators obtained via these optimal solutions is demonstrated through both numerical and experimental studies. Then, the proposed compensators have been successfully applied to RTHS tests. By comparing these results to results obtained using several existing feedforward compensators, the proposed compensator demonstrates superior performance in both time delay and Root-Mean-Square (RMS) error.

Topology Design for Energy/Latency Optimized Application-specific Hybrid Optical Network-on-Chip (HONoC) (특정 용도 하이브리드 광학 네트워크-온-칩에서의 에너지/응답시간 최적화를 위한 토폴로지 설계 기법)

  • Cui, Di;Lee, Jae Hoon;Kim, Hyun Joong;Han, Tae Hee
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.11
    • /
    • pp.83-93
    • /
    • 2014
  • It is a widespread concern that electrical interconnection based network-on-chip (NoC) will ultimately face the limitation in communication bandwidth, transmission latency and power consumption in the near future. With the development of silicon photonics technology, a hybrid optical network-on-chip (HONoC) which embraces both electrical- and optical interconnect, is emerging as a promising solution to overcome these problems. Today's leading edge systems-on-chips (SoCs) comprise heterogeneous many-cores for higher energy efficiency, therefore, extended study beyond regular topology based NoC is required. This paper proposes an energy and latency optimization topology design technique for HONoC taking into account the traffic characteristics of target applications. The proposed technique is implemented with genetic algorithm and simulation results show the reduction by 13.84% in power loss and 28.14% in average latency, respectively.

Compiler Optimization Techniques for The Next Generation Low Power Multibank Memory (차세대 저전력 멀티뱅크 메모리를 위한 컴파일러 최적화 기법)

  • Cho, Doosan
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.6
    • /
    • pp.141-145
    • /
    • 2021
  • Various types of memory architectures have been developed, and various compiler optimization techniques have been studied to efficiently use them. In particular, since a memory is a major component that determines performance in mobile computing devices, various optimization techniques have been developed to support them. Recently, a lot of research on hybrid type memory architecture is being conducted, so various compiler techniques are being studied to support it. Existing compiler optimization techniques can be used to achieve the required minimum performance and constraint on low power according to market requirements. References for determining the low-power effect and the degree of performance improvement using these optimization techniques are not properly provided yet. This study was conducted to provide the experimental results of the existing compiler technique as a reference for the development of multibank memory architecture.

A New Hybrid Evolutionary Programming Technique Using Sub-populations with Different Evolutionary Behaviors and Its Application to Camera Calibration (서로 다른 진화 특성을 가지는 부집단들을 사용한 새로운 하이브리드 진화 프로그래밍 기법과 카메라 보정 응용)

  • 조현중;오세영;최두현
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.35C no.9
    • /
    • pp.81-92
    • /
    • 1998
  • A new hybrid technique using several sub-populations having completely different evolutionary behaviors is proposed to increase the possibility to quickly find the global optimum of continuous optimization problem. It has three sub-populations. Two NPOSA algorithms showing good performance in the problem having a rugged fitness function are applied to two sub-populations and a self-adaptive evolutionary algorithm to the other sub-population. Sub-populations evolve in different manners and the interaction among these sub-populations lead to the global optimum quickly. The efficiency of this technique is verified through benchmark test functions. Finally, the algorithm with three sub-populations has been applied to seek for the optimal camera calibration parameters. After an error function has been defined using measured feature points of a calibration block, it has been shown that the algorithm searches for the camera parameters that minimize the error function.

  • PDF

An Improved Coyote Optimization Algorithm-Based Clustering for Extending Network Lifetime in Wireless Sensor Networks

  • Venkatesh Sivaprakasam;Vartika Kulshrestha;Godlin Atlas Lawrence Livingston;Senthilnathan Arumugam
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.7
    • /
    • pp.1873-1893
    • /
    • 2023
  • The development of lightweight, low energy and small-sized sensors incorporated with the wireless networks has brought about a phenomenal growth of Wireless Sensor Networks (WSNs) in its different fields of applications. Moreover, the routing of data is crucial in a wide number of critical applications that includes ecosystem monitoring, military and disaster management. However, the time-delay, energy imbalance and minimized network lifetime are considered as the key problems faced during the process of data transmission. Furthermore, only when the functionality of cluster head selection is available in WSNs, it is possible to improve energy and network lifetime. Besides that, the task of cluster head selection is regarded as an NP-hard optimization problem that can be effectively modelled using hybrid metaheuristic approaches. Due to this reason, an Improved Coyote Optimization Algorithm-based Clustering Technique (ICOACT) is proposed for extending the lifetime for making efficient choices for cluster heads while maintaining a consistent balance between exploitation and exploration. The issue of premature convergence and its tendency of being trapped into the local optima in the Improved Coyote Optimization Algorithm (ICOA) through the selection of center solution is used for replacing the best solution in the search space during the clustering functionality. The simulation results of the proposed ICOACT confirmed its efficiency by increasing the number of alive nodes, the total number of clusters formed with the least amount of end-to-end delay and mean packet loss rate.

The Optimum Structural Design of the High-speed Surface Effect Ship using Composite Materials - Minimum Weight Design (복합재료 쌍동형 초고속선의 최적 구조 설계 - 최소 중량 설계)

  • Chang-Doo Jang;Ho-Kyung Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.35 no.2
    • /
    • pp.94-103
    • /
    • 1998
  • Recently, many researches are carried for high-speed and light craft. In this study, the optimum structural design procedure and the computer program are developed to minimize the hull weight of SES(Surface Effect Ship) built of composite materials. Three types of composite materials-Sandwich, Single Skin and Hybrid type- are considered and the efficiency of each type is investigated. In design process, the optimum design of main members is performed at first considering longitudinal strength. And then, the transverse member design is performed considering torsional strength SSDP(Structural Synthesis Design program) of U.S. Navy is adopted for design algorithm and DnV classification nile for design loads and strength criteria. For optimum structural design, ES 1+1 optimization technique is used.

  • PDF

A Study on the Performance of Optimization Techniques on the Selection of Control Source Positions in an Active Noise Barrier System (능동방음벽 시스템의 제어 음원 위치 선정에 미치는 최적화 기법 성능에 관한 고찰)

  • Im, Hyoung-Jin;Baek, Kwang-Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.1012-1015
    • /
    • 2004
  • There have been several kinds of attempts to actively control the deflected noise behind the noise barrier. Omoto's work in 1993 would be one of the fundamental studies, where he placed the control sources uniformly parallel to the noise barrier. Following this study, Yang pointed that the average distance between the noise source and control sources is more important than the arrangement of control sources such as a straight line or an arc type distribution. In 2004, Baek tried to show optimal arrangement of control sources while keeping the average distance between the noise source and control sources. He used simulated annealing algorithm which is one of the natural algorithms for the selections of optimal control source positions, but the searching technique was a hybrid of the simulated annealing and the sequential searching to adapt to the vast amount of searching time. This study is about the performance comparison between the pure sequential searching and the hybrid one. The simulation results show very similar performance and a pure simulated annealing searching will be more beneficial for the noise reduction performance but at the cost of computing time.

  • PDF

Energy Forecasting Information System of Optimal Electricity Generation using Fuzzy-based RERNN with GPC

  • Elumalaivasan Poongavanam;Padmanathan Kasinathan;Karunanithi Kandasamy;S. P. Raja
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.10
    • /
    • pp.2701-2717
    • /
    • 2023
  • In this paper, a hybrid fuzzy-based method is suggested for determining India's best system for power generation. This suggested approach was created using a fuzzy-based combination of the Giza Pyramids Construction (GPC) and Recalling-Enhanced Recurrent Neural Network (RERNN). GPC is a meta-heuristic algorithm that deals with solutions for many groups of problems, whereas RERNN has selective memory properties. The evaluation of the current load requirements and production profile information system is the main objective of the suggested method. The Central Electricity Authority database, the Indian National Load Dispatch Centre, regional load dispatching centers, and annual reports of India were some of the sources used to compile the data regarding profiles of electricity loads, capacity factors, power plant generation, and transmission limits. The RERNN approach makes advantage of the ability to analyze the ideal power generation from energy data, however the optimization of RERNN factor necessitates the employment of a GPC technique. The proposed method was tested using MATLAB, and the findings indicate that it is effective in terms of accuracy, feasibility, and computing efficiency. The suggested hybrid system outperformed conventional models, achieving the top result of 93% accuracy with a shorter computation time of 6814 seconds.

A Study on the Performance Comparison of Optimization Techniques on the Selection of Control Source Positions in an Active Noise Barrier System (능동방음벽 시스템의 제어 음원 위치 선정에 미치는 최적화 기법 성능 비교 연구)

  • Im, Hyoung-Jin;Baek, Kwang-Hyun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.8 s.101
    • /
    • pp.911-917
    • /
    • 2005
  • There were many attempts to reduce noise behind the noise barrier using active control techniques. Omoto(1993) Shao(1997) and Yang(2001) tried to actively control the diffracted noise behind the barrier and main concerns were about the arrangement methods for the control sources. Baek (2004) tried to get better results using the simulated annealing method and the sequential searching technique. The main goal of this study is to develop and compare the performance of several optimization techniques including those mentioned above, hybrid version of simulated annealing and genetic algorithm for the optimal control source positions of active noise barrier system. The simulation results show fairly similar performance lot the small size of searching problem. However, as the number of control sources are increased, the performance of simulated annealing algorithm and genetic algorithm are better than the others. Simulations are also made to show the performance of the selected optimal control source positions not only at the receiver position but at the surrounding volume of the receiver position and plotted the noise reduction level in 3-D.

Optimization of Disk Sorptive Extraction Based on Monolithic Material for the Determination of Aroma Compounds from Lantana camara L. by Gas Chromatography-Mass Spectrometry

  • Jang, Hye-Jin;Son, Hyun-Hwa;Lee, Dong-Sun
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.12
    • /
    • pp.4275-4280
    • /
    • 2011
  • Present study describes the optimization of disk type sorptive extraction using monolithic material (Mono Trap) for the analysis of volatile aroma compounds from Lantana camara L. in combination with gas chromatography/mass spectrometry (GC/MS). Monolithic material sorptive extraction (MMSE) is a new sampling technique using a monolithic hybrid adsorptive disk (O.D. 10 mm, 1 mm thickness) made of high purity silica and activated carbon having a large surface area chemically bonded with octadecyl silane (ODS). The experimental parameters that may influence the MMSE efficiency have been optimized. Linearity, accuracy, precision and detection limits were evaluated to assess the performance of the proposed method. The method was validated with real plant samples of Lantana camara L. Twenty eight compounds including the main representative compounds of ${\alpha}$-curcumene and ${\beta}$-caryophyllene were found in analyzed samples. Results proved that proposed method could be used as a good alternative for the analysis for such volatile aroma compounds in plant samples.